The GATT architecture of BLE lends itself to small fixed pieces of data (20 bytes max per characteristic). But in some cases, you end up wanting to “stream” some arbitrary length of data, that is greater than 20 bytes. For example, a firmware upgrade, even if you know its slow.
I’m curious what scheme others have used if any, to “stream” data (even if small and slow) over BLE characteristics.
I’ve used two different schemes to date:
One was to use a control characteristic, where the receiving device notify the sending device how much data it had received, and the sending device then used that to trigger the next write (I did both with_response, and without_response) on a different characteristic.
Another scheme I did recently, was to basically chunk the data into 19 byte segments, where the first byte indicates the number of packets to follow, when it hits 0, that clues the receiver that all of the recent updates can be concatenated and processed as a single packet.
The kind of answer I'm looking for, is an overview of how someone with experience has implemented a decent schema for doing this. And can justify why what they did is the best (or at least better) solution.
After some review of existing protocols, I ended up designing a protocol for over-the-air update of my BLE peripherals.
1 implies 2-5, 6 is a performance requirement, 7 is optimization, 8 is portability.
After discovery of service and reading a few read-only characteristics to check compatibility of device with image to be uploaded, all upload takes place between two characteristics:
The whole firmware image is sent in chunks through the payload characteristic.
Payload is a 20-byte characteristic: 4-byte chunk offset, plus 16-byte data chunk.
Status notifications tell whether there is an error condition or not, and next expected payload chunk offset. This way, uploader can tell whether it may go on speculatively, sending its chunks from its own offset, or if it should resume from offset found in status notification.
Status updates are sent for two main reasons:
Receiver expects all chunks in order, it does no reordering. If a chunk is out of order, it gets dropped, and an error status notification is pushed.
When a status comes in, it acknowledges all chunks with smaller offsets implicitly.
Lastly, there is a transmit window on the sender side, where many successful acknowledges flying allow sender to enlarge its window (send more chunks ahead of matching acknowledge). Window is reduced if errors happen, dropped chunks probably are because of a queue overflow somewhere.
Using "one way" PDUs (write without response and notification) is to avoid 6. above, as ATT protocol explicitly tells acknowledged PDUs (write, indications) must not be pipelined (i.e. you may not send next PDU until you received response).
Status, containing the last received chunk, palliates 5.
To abide 2. and 3., payload is a 20-byte characteristic write. 4+16 has numerous advantages, one being the offset validation with a 16-byte chunk only involves shifts, another is that chunks are always page-aligned in target flash (better for 7.).
To cope with 4., more than one chunk is sent before receiving status update, speculating it will be correctly received.
This protocol has the following features:
Some parameters are out of this protocol:
With:
I get 3.8 packets per connection event on average, i.e. ~6 kB/s of useful payload after packet loss, protocol overhead, etc.
This way, upload of a 60 kB image is done in less than 10 seconds, the whole process (connection, discovery, transfer, image verification, decompression, flashing, reboot) under 20 seconds.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With