Consider the following code:
#include <stdio.h>
#include <stdlib.h>
int main() {
printf("main\n");
int a;
scanf("%d", &a);
printf("a = %d\n", a);
return 0;
}
int main1() {
printf("main1\n");
int a;
scanf("%d", &a);
printf("a = %d\n", a);
exit(0);
return 0;
}
int main2() {
printf("main2\n");
int a = getchar() - '0';
int b = getchar() - '0';
int c = getchar() - '0';
printf("a = %d\n", 100 * a + 10 * b + c);
exit(0);
return 0;
}
Assuming that the code resides in a file called test.c, the following works fine (it prints "a = 123"):
gcc -o test test.c
echo 123 | ./test
If, however, I run the program with a custom entry point, I get the dreaded Segmentation fault:
gcc -o test test.c -e"main1"
echo 123 | ./test
But if I replace the scanf with three getchars, the program runs fine again despite being run with a custom entry point:
gcc -o test test.c -e"main2"
echo 123 | ./test
To make things even more interesting, these problems occur with gcc 7.4.0 but not with gcc 4.8.4.
Any ideas?
The -e
command line flag redefines the actual entry point of your program, not the “user” entry point. By default, using GCC with the GNU C standard library (glibc) this entry point is called _start
, and it performs further setup before invoking the user-provided main
function.
If you want to replace this entry point and continue using glibc you’ll need to perform further setup yourself. But alternatively you can use the following method to replace the main
entry point, which is much simpler:
gcc -c test.c
objcopy --redefine-sym main1=main test.o
gcc -o test test.o
Note, this will only work if you don’t define main
in your code, otherwise you’ll get a “multiple definition of `main'” error from the linker.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With