Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Scala objects and thread safety

I am new to Scala.

I am trying to figure out how to ensure thread safety with functions in a Scala object (aka singleton)

From what I have read so far, it seems that I should keep visibility to function scope (or below) and use immutable variables wherever possible. However, I have not seen examples of where thread safety is violated, so I am not sure what other precautions should be taken.

Can someone point me to a good discussion of this issue, preferably with examples of where thread safety is violated?

like image 962
Jake Avatar asked Sep 16 '17 21:09

Jake


2 Answers

Oh man. This is a huge topic. Here's a Scala-based intro to concurrency and Oracle's Java lessons actually have a pretty good intro as well. Here's a brief intro that motivates why concurrent reading and writing of shared state (of which Scala objects are particular specific case) is a problem and provides a quick overview of common solutions.

There's two (fundamentally related) classes of problems when it comes to thread safety and state mutation:

  1. Clobbering (missing) writes
  2. Inaccurate (changing out from under you) reads

Let's look at each of these in turn.

First clobbering writes:

object WritesExample {
  var myList: List[Int] = List.empty
}

Imagine we had two threads concurrently accessing WritesExample, each of executes the following updateList

def updateList(x: WritesExample.type): Unit = 
  WritesExample.myList = 1 :: WritesExample.myList

You'd probably hope when both threads are done that WritesExample.myList has a length of 2. Unfortunately, that might not be the case if both threads read WritesExample.myList before the other thread has finished a write. If when both threads read WritesExample.myList it is empty, then both will write back a list of length 1, with one write overwriting the other, so that in the end WritesExample.myList only has a length of one. Hence we've effectively lost a write we were supposed to execute. Not good.

Now let's look at inaccurate reads.

object ReadsExample {
  val myMutableList: collection.mutable.MutableList[Int]
}

Once again, let's say we had two threads concurrently accessing ReadsExample. This time each of them executes updateList2 repeatedly.

def updateList2(x: ReadsExample.type): Unit = 
  ReadsExample.myMutableList += ReadsExample.myMutableList.length

In a single-threaded context, you would expect updateList2, when repeatedly called, to simply generate an ordered list of incrementing numbers, e.g. 0, 1, 2, 3, 4,.... Unfortunately, when multiple threads are accessing ReadsExample.myMutableList with updateList2 at the same time, it's possible that between when ReadsExample.myMutableList.length is read and when the write is finally persisted, ReadsExample.myMutableList has already been modified by another thread. So in theory you could see something like 0, 0, 1, 1 or potentially if one thread takes longer to write than another 0, 1, 2, 1 (where the slower thread finally writes to the list after the other thread has already accessed and written to the list three times).

What happened is that the read was inaccurate/out-of-date; the actual data structure that was updated was different from the one that was read, i.e. was changed out from under you in the middle of things. This is also a huge source of bugs because many invariants you might expect to hold (e.g. every number in the list corresponds exactly to its index or every number appears only once) hold in a single-threaded context, but fail in a concurrent context.

Now that we've motivated some of the problems, let's dive into some of the solutions. You mentioned immutability so let's talk about that first. You might notice that in my example of clobbering writes I use an immutable data structure whereas in my inconsistent reads example I use a mutable data structure. That is intentional. They are in a sense dual to one another.

With immutable data structures you cannot have an "inaccurate" read in the sense I laid out above because you never mutate data structures, but rather place a new copy of a data structure in the same location. The data structure cannot change out from under you because it cannot change! However you can lose a write in the process by placing a version of a data structure back to its original location that does not incorporate a change made previously by another process.

With mutable data structures on the other hand, you cannot lose a write because all writes are in-place mutations of the data structure, but you can end up executing a write to a data structure whose state differs from when you analyzed it to formulate the write.

If it's a "pick your poison" kind of scenario, why do you often hear advice to go with immutable data structures to help with concurrency? Well immutable data structures make it easier to ensure invariants about the state being modified hold even if writes are lost. For example, if I rewrote the ReadsList example to use an immutable List (and a var instead), then I could confidently say that the integer elements of the list will always correspond to the indices of the list. This means that your program is much less likely to enter an inconsistent state (e.g. it's not hard to imagine that a naive mutable set implementation could end up with non-unique elements when mutated concurrently). And it turns out that modern techniques for dealing with concurrency usually are pretty good at dealing with missing writes.

Let's look at some of those approaches that deal with shared state concurrency. At their hearts they can all be summed up as various ways of serializing read/write pairs.

Locks (a.k.a. directly try to serialize read/write pairs): This is usually the one you'll hear first as a fundamental way of dealing with concurrency. Every process that wants to access state first places a lock on it. Any other process is now excluded from accessing that state. The process then writes to that state and on completion releases the lock. Other processes are now free to repeat the process. In our WritesExample, updateList would first acquire the lock before executing and releasing the lock; this would prevent other processes from reading WritesExample.myList until the write was completed, thereby preventing them from seeing old versions of myList that would lead to clobbering writes (note that are more sophisticated locking procedures that allow for simultaneous reads, but let's stick with the basics for now).

Locks often do not scale well to multiple pieces of state. With multiple locks, often you need to acquire and release locks in a certain order otherwise you can end up deadlocking or livelocking.

The Oracle and Twitter docs linked a the beginning have good overviews of this approach.

Describe Your Action, Don't Execute It (a.k.a. build up a serial representation of your actions and have someone else process it): Instead of accessing and modifying state directly, you describe an action of how to do this and then give it to someone else to actually execute the action. For example, you might pass messages to an object (e.g. actors in Scala) that queues up these requests and then executes them one-by-one on some internal state that it never directly exposes to anyone else. In the particular case of actors, this improves the situation over locks by removing the need to explicitly acquire and release locks. As long as you encapsulate all the state you need to access at once in a single object, message passing works great. Actors break down when you distribute state across multiple objects (and as such this is heavily discouraged in this paradigm).

Akka actors are one good example of this in Scala.

Transactions (a.k.a. temporarily isolate some reads and writes from others and let the isolation system serialize things for you): Wrap all your read/writes in transactions that ensure during the course of your reads and writes your view of the world is isolated from any other changes. There's usually two ways of achieving this. Either you go for an approach similar to locks where you prevent other people from accessing the data while a transaction is running or you restart a transaction from the very beginning whenever you detect that a change has occurred to the shared state and throw away any progress you've made (usually the latter for performance reasons). On the one hand, transactions, unlike locks and actors, scale to disparate pieces of state very well. Just wrap all your accesses in transactions and you're good to go. On the other hand, your reads and writes have to be side-effect-free because they might be thrown away and retried many times and you can't really undo most side effects.

And if you're really unlucky, although you usually can't truly deadlock with a good implementation of transactions, a long-lived transaction can constantly be interrupted by other short-lived transactions such that it keeps getting thrown away and retried and never actually succeeds (which amounts to something like livelocking). In effect you're giving up direct control of serialization order and hoping your transaction system orders things sensibly.

Scala's STM library is a good example of this approach.

Remove Shared State: The final "solution" is to rethink the problem altogether and try to think about whether you truly need global, shared state that is writable. If you don't need writable shared state, then concurrency problems go away altogether!

Everything in life is about trade-offs and concurrency is no exception. When thinking about concurrency first understand what state you have and what invariants you want to preserve about that state. Then use that to guide your decision as to what kind of tools you want to use to tackle the problem.

like image 164
badcook Avatar answered Sep 24 '22 08:09

badcook


The Thread Safety Problem section within this Scala concurrency article might be of interest to you. In essence, it illustrates the thread safety problem using a simple example and outlines 3 different approaches to tackle the problem, namely synchronization, volatile and AtomicReference:

When you enter synchronized points, access volatile references, or deference AtomicReferences, Java forces the processor to flush their cache lines and provide a consistent view of data.

There is also a brief overview comparing the cost of the 3 approaches:

AtomicReference is the most costly of these two choices since you have to go through method dispatch to access values. volatile and synchronized are built on top of Java’s built-in monitors. Monitors cost very little if there’s no contention. Since synchronized allows you more fine-grained control over when you synchronize, there will be less contention so synchronized tends to be the cheapest option.

like image 20
Leo C Avatar answered Sep 21 '22 08:09

Leo C