I am trying to write a generic weighted average function.
I want to relax the requirements on the values and the weights being of the same type. ie, I want to support sequences of say: (value:Float,weight:Int)
and (value:Int,weight:Float)
arguments and not just: (value:Int,weight:Int)
To do so, I first need to implement a function that takes two generic numerical values and returns their product.
def times[A: Numeric, B: Numeric](x: B, y: A): (A, B) : ??? = {...}
Writing the signature and thinking about the return type, made me realise that I need to define some sort of hierarchy for Numerics to determine the return type. ie x:Float*y:Int=z:Float
, x:Float*y:Double=z:Double
.
Now, Numeric class defines operations plus
, times
, etc. only for arguments of the same type. I think I would need to implement a type:
class NumericConverter[Numeirc[A],Numeric[B]]{
type BiggerType=???
}
so that I can write my times function as:
def times[A: Numeric, B: Numeric](x: B, y: A): (A, B) :
NumericConverter[Numeirc[A],Numeric[B]].BiggerType= {...}
and convert the "smaller type" to the "bigger one" and feed it to times()
.
Am I on the right track? How would I "implement" the BiggerType
?
clearly I can't do something like:
type myType = if(...) Int else Float
as that is evaluated dynamically, so it worn't work.
I understand that I might be able to do this Using Scalaz, etc. but this is an academic exercise and I want to understand how to write a function that statically returns a type based on the argument types.
Feel free to let me know if there is a whole easier way of doing this.
update:
this is what I came up with it.
abstract class NumericsConvert[A: Numeric,B: Numeric]{
def AisBiggerThanB: Boolean
def timesA=new PartialFunction[(A,B), A] {
override def isDefinedAt(x: (A, B)): Boolean = AisBiggerThanB
override def apply(x: (A, B)): A = implicitly[Numeric[A]].times(x._1, x._2.asInstanceOf[A])
}
def timesB=new PartialFunction[(A,B), B] {
override def isDefinedAt(x: (A, B)): Boolean = !AisBiggerThanB
override def apply(x: (A, B)): B = implicitly[Numeric[B]].times(x._1.asInstanceOf[B], x._2)
}
def times: PartialFunction[(A, B), Any] = timesA orElse timesB
}
def times[A: Numeric, B: Numeric](x: B, y: A)= implicitly[NumericsConvert[A,B]].times(x,y)
which is silly as I will have to create implicits for both
IntDouble extends NumericsConvert[Int,Double]
and
DoubleInt extends NumericsConvert[Double,Int]
not to mention that the return type of times
is now Any
, but regardless, I am getting errors for my times functions. I thought I would add it here in case it might help with arriving at a solution. so side question: how I can pass context bound types of one class/function to another like I am trying to do in times.
I think you're making this harder than it needs to be.
You need "evidence" that both parameters are Numeric
. With that established let the evidence do the work. Scala will employ numeric widening so that the result is the more general of the two received types.
def mult[T](a: T, b: T)(implicit ev:Numeric[T]): T =
ev.times(a,b)
If you want to get a little fancier you can pull in the required implicits. Then it's a little easier to read and understand.
def mult[T: Numeric](a: T, b: T): T = {
import Numeric.Implicits._
a * b
}
Proof:
mult(2.3f , 7) //res0: Float = 16.1
mult(8, 2.1) //res1: Double = 16.8
mult(3, 2) //res2: Int = 6
For more on generic types and numeric widening, this question, and its answer, are worth studying.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With