Here is a sample data frame:
import pandas as pd
NaN = float('nan')
ID = [1, 2, 3, 4, 5, 6, 7]
A = [NaN, NaN, NaN, 0.1, 0.1, 0.1, 0.1]
B = [0.2, NaN, 0.2, 0.2, 0.2, NaN, NaN]
C = [NaN, 0.5, 0.5, NaN, 0.5, 0.5, NaN]
columns = {'A':A, 'B':B, 'C':C}
df = pd.DataFrame(columns, index=ID)
df.index.name = 'ID'
print(df)
A B C
ID
1 NaN 0.2 NaN
2 NaN NaN 0.5
3 NaN 0.2 0.5
4 0.1 0.2 NaN
5 0.1 0.2 0.5
6 0.1 NaN 0.5
7 0.1 NaN NaN
I know that pandas has the pytables based HDFStore, which is an easy way to efficiently serialize/deserialize a data frame. But those datasets are not very easy to load directly using a reader h5py or matlab. How can I save a data frame using h5py, so that I can easily load it back using another hdf5 reader?
Here is my approach to solving this problem. I am hoping either someone else has a better solution or my approach is helpful to others.
First, define function to make a numpy structure array (not a record array) from a pandas DataFrame.
import numpy as np
def df_to_sarray(df):
"""
Convert a pandas DataFrame object to a numpy structured array.
This is functionally equivalent to but more efficient than
np.array(df.to_array())
:param df: the data frame to convert
:return: a numpy structured array representation of df
"""
v = df.values
cols = df.columns
types = [(cols[i].encode(), df[k].dtype.type) for (i, k) in enumerate(cols)]
dtype = np.dtype(types)
z = np.zeros(v.shape[0], dtype)
for (i, k) in enumerate(z.dtype.names):
z[k] = v[:, i]
return z
Use reset_index
to make a new data frame that includes the index as part of its data. Convert that data frame to a structure array.
sa = df_to_sarray(df.reset_index())
sa
array([(1L, nan, 0.2, nan), (2L, nan, nan, 0.5), (3L, nan, 0.2, 0.5),
(4L, 0.1, 0.2, nan), (5L, 0.1, 0.2, 0.5), (6L, 0.1, nan, 0.5),
(7L, 0.1, nan, nan)],
dtype=[('ID', '<i8'), ('A', '<f8'), ('B', '<f8'), ('C', '<f8')])
Save that structured array to an hdf5 file.
import h5py
with h5py.File('mydata.h5', 'w') as hf:
hf['df'] = sa
Load the h5 dataset
with h5py.File('mydata.h5') as hf:
sa2 = hf['df'][:]
Extract the ID column and delete it from sa2
import numpy.lib.recfunctions as nprec
ID = sa2['ID']
sa2 = nprec.drop_fields(sa2, 'ID')
Make data frame with index ID using sa2
df2 = pd.DataFrame(sa2, index=ID)
df2.index.name = 'ID'
print(df2)
A B C
ID
1 NaN 0.2 NaN
2 NaN NaN 0.5
3 NaN 0.2 0.5
4 0.1 0.2 NaN
5 0.1 0.2 0.5
6 0.1 NaN 0.5
7 0.1 NaN NaN
The pandas HDFStore
format is standard HDF5, with just a convention for how to interpret the meta-data. Docs are here
In [54]: df.to_hdf('test.h5','df',mode='w',format='table',data_columns=True)
In [55]: h = h5py.File('test.h5')
In [56]: h['df']['table']
Out[56]: <HDF5 dataset "table": shape (7,), type "|V32">
In [64]: h['df']['table'][:]
Out[64]:
array([(1, nan, 0.2, nan), (2, nan, nan, 0.5), (3, nan, 0.2, 0.5),
(4, 0.1, 0.2, nan), (5, 0.1, 0.2, 0.5), (6, 0.1, nan, 0.5),
(7, 0.1, nan, nan)],
dtype=[('index', '<i8'), ('A', '<f8'), ('B', '<f8'), ('C', '<f8')])
In [57]: h['df']['table'].attrs.items()
Out[57]:
[(u'CLASS', 'TABLE'),
(u'VERSION', '2.7'),
(u'TITLE', ''),
(u'FIELD_0_NAME', 'index'),
(u'FIELD_1_NAME', 'A'),
(u'FIELD_2_NAME', 'B'),
(u'FIELD_3_NAME', 'C'),
(u'FIELD_0_FILL', 0),
(u'FIELD_1_FILL', 0.0),
(u'FIELD_2_FILL', 0.0),
(u'FIELD_3_FILL', 0.0),
(u'index_kind', 'integer'),
(u'A_kind', "(lp1\nS'A'\na."),
(u'A_meta', 'N.'),
(u'A_dtype', 'float64'),
(u'B_kind', "(lp1\nS'B'\na."),
(u'B_meta', 'N.'),
(u'B_dtype', 'float64'),
(u'C_kind', "(lp1\nS'C'\na."),
(u'C_meta', 'N.'),
(u'C_dtype', 'float64'),
(u'NROWS', 7)]
In [58]: h.close()
The data will be completely readable in any HDF5 reader. Some of the meta-data is pickled, so care must be taken.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With