How to sample without replacement in TensorFlow? Like numpy.random.choice(n, size=k, replace=False)
for some very large integer n
(e.g. 100k-100M), and smaller k
(e.g. 100-10k).
Also, I want it to be efficient and on the GPU, so other solutions like this with tf.py_func
are not really an option for me. Anything which would use tf.range(n)
or so is also not an option because n
could be very large.
In practice, sampling without replacement saves you the need to, well, make replacements. This has two benefits: You can just take a larger sample and consider it as multiple individual samples. Replacements in the real world can be costly, time-consuming or even nigh-impossible.
Without replacement means the same item cannot be selected more than once. Example 1: A PIN code at your bank is made up of 4 digits, with replacement. ( The same digit can be selected more than once) 10 X 10 X 10 X 10 = 10,000 combinations are possible.
Sampling without Replacement is a way to figure out probability without replacement. In other words, you don't replace the first item you choose before you choose a second. This dramatically changes the odds of choosing sample items.
In sampling without replacement, the formula for the standard deviation of all sample means for samples of size n must be modified by including a finite population correction. The formula becomes: where N is the population size, N=6 in this example, and n is the sample size, n=4 in this case.
This is one way:
n = ...
sample_size = ...
idx = tf.random_shuffle(tf.range(n))[:sample_size]
EDIT:
I had posted the answer below but then read the last line of your post. I don't think there is a good way to do it if you absolutely cannot produce a tensor with size O(n) (numpy.random.choice
with replace=False
is also implemented as a slice of a permutation). You could resort to a tf.while_loop
until you have unique indices:
n = ...
sample_size = ...
idx = tf.zeros(sample_size, dtype=tf.int64)
idx = tf.while_loop(
lambda i: tf.size(idx) == tf.size(tf.unique(idx)),
lambda i: tf.random_uniform(sample_size, maxval=n, dtype=int64))
EDIT 2:
About the average number of iterations in the previous method. If we call n the number of possible values and k the length of the desired vector (with k ≤ n), the probability that an iteration is successful is:
p = product((n - (i - 1) / n) for i in 1 .. k)
Since each iteartion can be considered a Bernoulli trial, the average number of trials unitl first success is 1 / p (proof here). Here is a function that calculates the average numbre of trials in Python for some k and n values:
def avg_iter(k, n):
if k > n or n <= 0 or k < 0:
raise ValueError()
avg_it = 1.0
for p in (float(n) / (n - i) for i in range(k)):
avg_it *= p
return avg_it
And here are some results:
+-------+------+----------+
| n | k | Avg iter |
+-------+------+----------+
| 10 | 5 | 3.3 |
| 100 | 10 | 1.6 |
| 1000 | 10 | 1.1 |
| 1000 | 100 | 167.8 |
| 10000 | 10 | 1.0 |
| 10000 | 100 | 1.6 |
| 10000 | 1000 | 2.9e+22 |
+-------+------+----------+
You can see it varies wildy depending on the parameters.
It is possible, though, to construct a vector in a fixed number of steps, although the only algorithm I can think of is O(k2). In pure Python it goes like this:
import random
def sample_wo_replacement(n, k):
sample = [0] * k
for i in range(k):
sample[i] = random.randint(0, n - 1 - len(sample))
for i, v in reversed(list(enumerate(sample))):
for p in reversed(sample[:i]):
if v >= p:
v += 1
sample[i] = v
return sample
random.seed(100)
print(sample_wo_replacement(10, 5))
# [2, 8, 9, 7, 1]
print(sample_wo_replacement(10, 10))
# [6, 5, 8, 4, 0, 9, 1, 2, 7, 3]
This is a possible way to do it in TensorFlow (not sure if the best one):
import tensorflow as tf
def sample_wo_replacement_tf(n, k):
# First loop
sample = tf.constant([], dtype=tf.int64)
i = 0
sample, _ = tf.while_loop(
lambda sample, i: i < k,
# This is ugly but I did not want to define more functions
lambda sample, i: (tf.concat([sample,
tf.random_uniform([1], maxval=tf.cast(n - tf.shape(sample)[0], tf.int64), dtype=tf.int64)],
axis=0),
i + 1),
[sample, i], shape_invariants=[tf.TensorShape((None,)), tf.TensorShape(())])
# Second loop
def inner_loop(sample, i):
sample_size = tf.shape(sample)[0]
v = sample[i]
j = i - 1
v, _ = tf.while_loop(
lambda v, j: j >= 0,
lambda v, j: (tf.cond(v >= sample[j], lambda: v + 1, lambda: v), j - 1),
[v, j])
return (tf.where(tf.equal(tf.range(sample_size), i), tf.tile([v], (sample_size,)), sample), i - 1)
i = tf.shape(sample)[0] - 1
sample, _ = tf.while_loop(lambda sample, i: i >= 0, inner_loop, [sample, i])
return sample
And an example:
with tf.Graph().as_default(), tf.Session() as sess:
tf.set_random_seed(100)
sample = sample_wo_replacement_tf(10, 5)
for i in range(10):
print(sess.run(sample))
# [3 0 6 8 4]
# [5 4 8 9 3]
# [1 4 0 6 8]
# [8 9 5 6 7]
# [7 5 0 2 4]
# [8 4 5 3 7]
# [0 5 7 4 3]
# [2 0 3 8 6]
# [3 4 8 5 1]
# [5 7 0 2 9]
This is quite intesive on tf.while_loop
s, though, which are well-known not to be particularly fast in TensorFlow, so I wouldn't know how fast can you really get with this method without some kind of benchmarking.
EDIT 4:
One last possible method. You can divide the range of possible values (0 to n) in "chunks" of size c and pick a random amount of numbers from each chunk, then shuffle everything. The amount of memory that you use is limited by c, and you don't need nested loops. If n is divisible by c, then you should get about a perfect random distribution, otherwise values in the last "short" chunk would receive some extra probability (this may be negligible depending on the case). Here is a NumPy implementation. It is somewhat long to account for different corner cases and pitfalls, but if c ≥ k and n mod c = 0 several parts get simplified.
import numpy as np
def sample_chunked(n, k, chunk=None):
chunk = chunk or n
last_chunk = chunk
parts = n // chunk
# Distribute k among chunks
max_p = min(float(chunk) / k, 1.0)
max_p_last = max_p
if n % chunk != 0:
parts += 1
last_chunk = n % chunk
max_p_last = min(float(last_chunk) / k, 1.0)
p = np.full(parts, 2)
# Iterate until a valid distribution is found
while not np.isclose(np.sum(p), 1) or np.any(p > max_p) or p[-1] > max_p_last:
p = np.random.uniform(size=parts)
p /= np.sum(p)
dist = (k * p).astype(np.int64)
sample_size = np.sum(dist)
# Account for rounding errors
while sample_size < k:
i = np.random.randint(len(dist))
while (dist[i] >= chunk) or (i == parts - 1 and dist[i] >= last_chunk):
i = np.random.randint(len(dist))
dist[i] += 1
sample_size += 1
while sample_size > k:
i = np.random.randint(len(dist))
while dist[i] == 0:
i = np.random.randint(len(dist))
dist[i] -= 1
sample_size -= 1
assert sample_size == k
# Generate sample parts
sample_parts = []
for i, v in enumerate(np.nditer(dist)):
if v <= 0:
continue
c = chunk if i < parts - 1 else last_chunk
base = chunk * i
sample_parts.append(base + np.random.choice(c, v, replace=False))
sample = np.concatenate(sample_parts, axis=0)
np.random.shuffle(sample)
return sample
np.random.seed(100)
print(sample_chunked(15, 5, 4))
# [ 8 9 12 13 3]
A quick benchmark of sample_chunked(100000000, 100000, 100000)
takes about 3.1 seconds in my computer, while I haven't been able to run the previous algorithm (sample_wo_replacement
function above) to completion with the same parameters. It should be possible to implement it in TensorFlow, maybe using tf.TensorArray
, although it would require significant effort to get it exactly right.
use the gumbel-max trick here: https://github.com/tensorflow/tensorflow/issues/9260
z = -tf.log(-tf.log(tf.random_uniform(tf.shape(logits),0,1)))
_, indices = tf.nn.top_k(logits + z,K)
indices are what you want. This tick is so easy~!
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With