Today I tried to solve a small challenge:
You are a big company with 500 offices, you want to compute the global revenue (sum of revenues of each office).
Each office exposes a service to get the revenue. The call takes a certain delay (network, db access, ...).
Obviously, you want global revenue as fast as possible.
Firstly I tried in python with pretty good results:
import asyncio
import time
DELAYS = (475, 500, 375, 100, 250, 125, 150, 225, 200, 425, 275, 350, 450, 325, 400, 300, 175)
class Office:
def __init__(self, delay, name, revenue):
self.delay = delay
self.name = name
self.revenue = revenue
async def compute(self):
await asyncio.sleep(self.delay / 1000)
print(f'{self.name} finished in {self.delay}ms')
return self.revenue
async def main(offices, totest):
computed = sum(await asyncio.gather(*[o.compute() for o in offices]))
verdict = ['nok', 'ok'][computed == totest]
print(f'Sum of revenues = {computed} {verdict}')
if __name__ == "__main__":
offices = [Office(DELAYS[i % len(DELAYS)], f'Office-{i}', 3 * i + 10) for i in range(500)]
totest = sum(o.revenue for o in offices)
start = time.perf_counter()
asyncio.run(main(offices, totest))
end = time.perf_counter()
print(f'Ends in {(end-start)*1000:.3f}ms')
On my computer it takes around 500ms, the ideal case (because 500ms is the maximum delay)
Next, I tried in java with RxJava:
import java.util.concurrent.TimeUnit;
public class Office {
private int sleepTime;
private String name;
private int revenue;
public Office(int sleepTime, String name, int revenue) {
this.sleepTime = sleepTime;
this.name = name;
this.revenue = revenue;
}
public int getRevenue() {
return revenue;
}
public int compute() {
try {
TimeUnit.MILLISECONDS.sleep(this.sleepTime);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.printf("%s finished in %dms on thread %d%n", this.name, this.sleepTime, Thread.currentThread().getId());
return this.revenue;
}
}
import io.reactivex.Flowable;
import io.reactivex.schedulers.Schedulers;
import java.time.Duration;
import java.time.Instant;
import java.util.ArrayList;
public class Tester {
private static int[] DELAYS = {475, 500, 375, 100, 250, 125, 150, 225, 200, 425, 275, 350, 450, 325, 400, 300, 175};
public static void main(String[] args) {
final ArrayList<Office> offices = new ArrayList<>();
for (int i = 0; i < 500; i++) {
offices.add(new Office(DELAYS[i % DELAYS.length], String.format("Office-%d", i), 3 * i + 10));
}
int totest = offices.stream().mapToInt(Office::getRevenue).sum();
final Instant start = Instant.now();
final Flowable<Office> officeObservable = Flowable.fromIterable(offices);
int computation = officeObservable.parallel(500).runOn(Schedulers.io()).map(Office::compute).reduce(Integer::sum).blockingSingle();
boolean verdict = computation == totest;
System.out.println("" + computation + " " + (verdict ? "ok" : "nok"));
final Instant end = Instant.now();
System.out.printf("Ends in %dms%n", Duration.between(start, end).toMillis());
}
}
On my computer, it takes around 1000ms (with a pool of 500 threads !!).
Of course, I tried with different number of threads but results are worst or similar.
I don't want to compare Python and Java, I just want:
Explanations if I did mistakes
A better approach?
Also, python async uses only one thread but in Java I didn't find how not to use multithreading to have a similar result.
Maybe someone could help me? :-)
It quite simple. On the python side, you wait in async mode ( not blocking) on the java side, you wait with a blocking code hence the difference.
The correct code in java should be:
package com.test;
import io.reactivex.Flowable;
import io.reactivex.Single;
import io.reactivex.schedulers.Schedulers;
import org.reactivestreams.Publisher;
import java.time.Duration;
import java.time.Instant;
import java.util.ArrayList;
import java.util.concurrent.TimeUnit;
public class TestReactive {
public static class Office {
private int sleepTime;
private String name;
private int revenue;
public Office(int sleepTime, String name, int revenue) {
this.sleepTime = sleepTime;
this.name = name;
this.revenue = revenue;
}
public int getRevenue() {
return revenue;
}
public Publisher<Integer> compute() {
return Single.just("")
.delay(this.sleepTime, TimeUnit.MILLISECONDS)
.map(x-> {
System.out.printf("%s finished in %dms on thread %d%n", this.name, this.sleepTime, Thread.currentThread().getId());
return this.revenue;
}).toFlowable();
}
}
private static int[] DELAYS = {475, 500, 375, 100, 250, 125, 150, 225, 200, 425, 275, 350, 450, 325, 400, 300, 175};
public static void main(String[] args) {
final ArrayList<Office> offices = new ArrayList<>();
for (int i = 0; i < 500; i++) {
offices.add(new Office(DELAYS[i % DELAYS.length], String.format("Office-%d", i), 3 * i + 10));
}
int totest = offices.stream().mapToInt(Office::getRevenue).sum();
final Instant start = Instant.now();
final Flowable<Office> officeObservable = Flowable.fromIterable(offices);
int computation = officeObservable.parallel(2).runOn(Schedulers.io()).flatMap(Office::compute).reduce(Integer::sum).blockingSingle();
boolean verdict = computation == totest;
System.out.println("" + computation + " " + (verdict ? "ok" : "nok"));
final Instant end = Instant.now();
System.out.printf("Ends in %dms%n", Duration.between(start, end).toMillis());
}
}
Edit: I set a parallel of 2 but who care, you can put a single thread as it is not a CPU limit issue here.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With