I am trying to use Pytorch to run classification on a dataset of images of cats and dogs. In my code I am so far downloading the data and going into the folder train which has two folders in it called "cats" and "dogs." I am then trying to load this data into a dataloader and iterate through batches, but it is giving me some error I don't understand in the iteration step.
Since it is Google Colabs I have code in there for downloading data and installing libraries. Any other advice on my code so far would be appreciated as well.
!pip install torch
!pip install torchvision
from __future__ import print_function, division
import os
import torch
import pandas as pd
import numpy as np
# For showing and formatting images
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
# For importing datasets into pytorch
import torchvision.datasets as dataset
# Used for dataloaders
import torch.utils.data as data
# For pretrained resnet34 model
import torchvision.models as models
# For optimisation function
import torch.nn as nn
import torch.optim as optim
!wget http://files.fast.ai/data/dogscats.zip
!unzip dogscats.zip
batch_size = 256
train_raw = dataset.ImageFolder(PATH+"train", transform=transforms.ToTensor())
train_loader = data.DataLoader(train_raw, batch_size=batch_size, shuffle=True)
for batch_idx, (data, target) in enumerate(train_loader):
print("Data: ", batch_idx)
The error comes up on the last lines and is below:
RuntimeErrorTraceback (most recent call last)
<ipython-input-66-c32dd0c1b880> in <module>()
----> 1 for batch_idx, (data, target) in enumerate(train_loader):
2 print("Data: ", batch_idx)
3
/usr/local/lib/python2.7/dist-packages/torch/utils/data/dataloader.pyc in __next__(self)
257 if self.num_workers == 0: # same-process loading
258 indices = next(self.sample_iter) # may raise StopIteration
--> 259 batch = self.collate_fn([self.dataset[i] for i in indices])
260 if self.pin_memory:
261 batch = pin_memory_batch(batch)
/usr/local/lib/python2.7/dist-packages/torch/utils/data/dataloader.pyc in default_collate(batch)
133 elif isinstance(batch[0], collections.Sequence):
134 transposed = zip(*batch)
--> 135 return [default_collate(samples) for samples in transposed]
136
137 raise TypeError((error_msg.format(type(batch[0]))))
/usr/local/lib/python2.7/dist-packages/torch/utils/data/dataloader.pyc in default_collate(batch)
110 storage = batch[0].storage()._new_shared(numel)
111 out = batch[0].new(storage)
--> 112 return torch.stack(batch, 0, out=out)
113 elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \
114 and elem_type.__name__ != 'string_':
/usr/local/lib/python2.7/dist-packages/torch/functional.pyc in stack(sequence, dim, out)
62 inputs = [t.unsqueeze(dim) for t in sequence]
63 if out is None:
---> 64 return torch.cat(inputs, dim)
65 else:
66 return torch.cat(inputs, dim, out=out)
RuntimeError: invalid argument 0: Sizes of tensors must match except in dimension 0. Got 400 and 487 in dimension 2 at /pytorch/torch/lib/TH/generic/THTensorMath.c:2897
Thanks
Note: It seems that CoLab has already preinstalled Pytorch for you, so if you run this command, it'll tell you “Requirement already satisfied”. However, you can use the same method to install any other python package through pip install.
Dataset stores the samples and their corresponding labels, and DataLoader wraps an iterable around the Dataset to enable easy access to the samples.
I think the main problem was images being of different size . I may have understood ImageFolder in other way but, i think you don't need labels for images if the directory structure is as specified in pytorch and pytorch will figure out the labels for you. I would also add more things to your transform that automatically resizes every images from the folder such as:
normalize = transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
)
transform = transforms.Compose(
[transforms.ToTensor(),transforms.Resize((224,224)),
normalize])
Also you can use other tricks to make your DataLoader much faster such as adding batch_size and number of cpu workers such as:
testloader = DataLoader(testset, batch_size=16,
shuffle=False, num_workers=4)
I think this will make you pipeline much faster.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With