I have a numpy array for an image that I read in from a FITS file. I rotated it by N degrees using scipy.ndimage.interpolation.rotate
. Then I want to figure out where some point (x,y) in the original non-rotated frame ends up in the rotated image -- i.e., what are the rotated frame coordinates (x',y')?
This should be a very simple rotation matrix problem but if I do the usual mathematical or programming based rotation equations, the new (x',y') do not end up where they originally were. I suspect this has something to do with needing a translation matrix as well because the scipy rotate function is based on the origin (0,0) rather than the actual center of the image array.
Can someone please tell me how to get the rotated frame (x',y')? As an example, you could use
from scipy import misc
from scipy.ndimage import rotate
data_orig = misc.face()
data_rot = rotate(data_orig,66) # data array
x0,y0 = 580,300 # left eye; (xrot,yrot) should point there
P.S. The following two related questions' answers do not help me:
Find new coordinates of a point after rotation
New coordinates after image rotation using scipy.ndimage.rotate
Rotate image with NumPy: np. The NumPy function that rotates ndarray is np. rot90() . Specify the original ndarray as the first argument and the number of times to rotate 90 degrees as the second argument.
rotate() function is used to rotate an image by an angle in Python.
PIL.Image.Image.rotate() method – This method is used to rotate a given image to the given number of degrees counter clockwise around its centre. Parameters: image_object: It is the real image which is to be rotated. angle: In degrees counter clockwise.
As usual with rotations, one needs to translate to the origin, then rotate, then translate back. Here, we can take the center of the image as origin.
import numpy as np
import matplotlib.pyplot as plt
from scipy import misc
from scipy.ndimage import rotate
data_orig = misc.face()
x0,y0 = 580,300 # left eye; (xrot,yrot) should point there
def rot(image, xy, angle):
im_rot = rotate(image,angle)
org_center = (np.array(image.shape[:2][::-1])-1)/2.
rot_center = (np.array(im_rot.shape[:2][::-1])-1)/2.
org = xy-org_center
a = np.deg2rad(angle)
new = np.array([org[0]*np.cos(a) + org[1]*np.sin(a),
-org[0]*np.sin(a) + org[1]*np.cos(a) ])
return im_rot, new+rot_center
fig,axes = plt.subplots(2,2)
axes[0,0].imshow(data_orig)
axes[0,0].scatter(x0,y0,c="r" )
axes[0,0].set_title("original")
for i, angle in enumerate([66,-32,90]):
data_rot, (x1,y1) = rot(data_orig, np.array([x0,y0]), angle)
axes.flatten()[i+1].imshow(data_rot)
axes.flatten()[i+1].scatter(x1,y1,c="r" )
axes.flatten()[i+1].set_title("Rotation: {}deg".format(angle))
plt.show()
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With