Say I have a dataframe containing strings, such as:
df = pd.DataFrame({'col1':list('some_string')})
col1
0 s
1 o
2 m
3 e
4 _
5 s
...
I'm looking for a way to apply a rolling window on col1
and join the strings in a certain window size. Say for instance window=3
, I'd like to obtain (with no minimum number of observations):
col1
0 s
1 so
2 som
3 ome
4 me_
5 e_s
6 _st
7 str
8 tri
9 rin
10 ing
I've tried the obvious solutions with rolling
which fail at handling object types:
df.col1.rolling(3, min_periods=0).sum()
df.col1.rolling(3, min_periods=0).apply(''.join)
Both raise:
cannot handle this type -> object
Is there a generalisable approach to do so (not using shift
to match this specific case of w=3
)?
How about shifting the series?
df.col1.shift(2).fillna('') + df.col1.shift().fillna('') + df.col1
Generalizing to any number:
pd.concat([df.col1.shift(i).fillna('') for i in range(3)], axis=1).sum(axis=1)
Rolling works only with numbers:
def _prep_values(self, values=None, kill_inf=True): if values is None: values = getattr(self._selected_obj, 'values', self._selected_obj) # GH #12373 : rolling functions error on float32 data # make sure the data is coerced to float64 if is_float_dtype(values.dtype): values = ensure_float64(values) elif is_integer_dtype(values.dtype): values = ensure_float64(values) elif needs_i8_conversion(values.dtype): raise NotImplementedError... ... ...
So you should construct it manually. Here is one of the possible variants with simple list comprehensions (maybe there is a more Pandas-ish way exists):
df = pd.DataFrame({'col1':list('some_string')})
pd.Series([
''.join(df.col1.values[max(i-2, 0): i+1])
for i in range(len(df.col1.values))
])
0 s 1 so 2 som 3 ome 4 me_ 5 e_s 6 _st 7 str 8 tri 9 rin 10 ing dtype: object
Using pd.Series.cumsum
seems like working (although bit of inefficient):
df['col1'].cumsum().str[-3:]
Output:
0 s
1 so
2 som
3 ome
4 me_
5 e_s
6 _st
7 str
8 tri
9 rin
10 ing
Name: col1, dtype: object
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With