Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Robust linear interpolation

Tags:

Given two segment endpoints A and B (in two dimensions), I would like to perform linear interpolation based on a value t, i.e.:

C = A + t(B-A)

In the ideal world, A, B and C should be collinear. However, we are operating with limited floating-point here, so there will be small deviations. To work around numerical issues with other operations I am using robust adaptive routines originally created by Jonathan Shewchuk. In particular, Shewchuk implements an orientation function orient2d that uses adaptive precision to exactly test the orientation of three points.

Here my question: is there a known procedure how the interpolation can be computed using the floating-point math, so that it lies exactly on the line between A and B? Here, I care less about the accuracy of the interpolation itself and more about the resulting collinearity. In another terms, its ok if C is shifted around a bit as long as collinearity is satisfied.

like image 761
MrMobster Avatar asked Oct 01 '16 07:10

MrMobster


1 Answers

The bad news

The request can't be satisfied. There are values of A and B for which there is NO value of t other than 0 and 1 for which lerp(A, B, t) is a float.

A trivial example in single precision is x1 = 12345678.f and x2 = 12345679.f. Regardless of the values of y1 and y2, the required result must have an x component between 12345678.f and 12345679.f, and there's no single-precision float between these two.

The (sorta) good news

The exact interpolated value, however, can be represented as the sum of 5 floating-point values (vectors in the case of 2D): one for the formula's result, one for the error in each operation [1] and one for multiplying the error by t. I'm not sure if that will be useful to you. Here's a 1D C version of the algorithm in single precision that uses fused multiply-add to calculate the product error, for simplicity:

#include <math.h>

float exact_sum(float a, float b, float *err)
{
    float sum = a + b;
    float z = sum - a;
    *err = a - (sum - z) + (b - z);
    return sum;
}

float exact_mul(float a, float b, float *err)
{
    float prod = a * b;
    *err = fmaf(a, b, -prod);
    return prod;
}

float exact_lerp(float A, float B, float t,
                 float *err1, float *err2, float *err3, float *err4)
{
    float diff = exact_sum(B, -A, err1);
    float prod = exact_mul(diff, t, err2);
    *err1 = exact_mul(*err1, t, err4);
    return exact_sum(A, prod, err3);
}

In order for this algorithm to work, operations need to conform to IEEE-754 semantics in round-to-nearest mode. That's not guaranteed by the C standard, but the GNU gcc compiler can be instructed to do so, at least in processors supporting SSE2 [2][3].

It is guaranteed that the arithmetic addition of (result + err1 + err2 + err3 + err4) will be equal to the desired result; however, there is no guarantee that the floating-point addition of these quantities will be exact.

To use the above example, exact_lerp(12345678.f, 12345679.f, 0.300000011920928955078125f, &err1, &err2, &err3, &err4) returns a result of 12345678.f and err1, err2, err3 and err4 are 0.0f, 0.0f, 0.300000011920928955078125f and 0.0f respectively. Indeed, the correct result is 12345678.300000011920928955078125 which can't be represented as a single-precision float.

A more convoluted example: exact_lerp(0.23456789553165435791015625f, 7.345678806304931640625f, 0.300000011920928955078125f, &err1, &err2, &err3, &err4) returns 2.3679010868072509765625f and the errors are 6.7055225372314453125e-08f, 8.4771045294473879039287567138671875e-08f, 1.490116119384765625e-08f and 2.66453525910037569701671600341796875e-15f. These numbers add up to the exact result, which is 2.36790125353468550173374751466326415538787841796875 and can't be exactly stored in a single-precision float.

All numbers in the examples above are written using their exact values, rather than a number that approximates to them. For example, 0.3 can't be represented exactly as a single-precision float; the closest one has an exact value of 0.300000011920928955078125 which is the one I've used.

It might be possible that if you calculate err1 + err2 + err3 + err4 + result (in that order), you get an approximation that is considered collinear in your use case. Perhaps worth a try.

References

  • [1] Graillat, Stef (2007). Accurate Floating Point Product and Exponentiation.
  • [2] Enabling strict floating point mode in GCC
  • [3] Semantics of Floating Point Math in GCC
like image 61
Pedro Gimeno Avatar answered Sep 23 '22 16:09

Pedro Gimeno