Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Reverting from multiindex to single index dataframe in pandas

Tags:

python

pandas

People also ask

How do you change a DataFrame to an index?

To reset the index in pandas, you simply need to chain the function . reset_index() with the dataframe object. On applying the . reset_index() function, the index gets shifted to the dataframe as a separate column.

How convert MultiIndex to columns in pandas?

pandas MultiIndex to ColumnsUse pandas DataFrame. reset_index() function to convert/transfer MultiIndex (multi-level index) indexes to columns. The default setting for the parameter is drop=False which will keep the index values as columns and set the new index to DataFrame starting from zero.

How do you convert multiple indexes?

A multi-index dataframe has multi-level, or hierarchical indexing. We can easily convert the multi-level index into the column by the reset_index() method. DataFrame. reset_index() is used to reset the index to default and make the index a column of the dataframe.


pass level=[0,1] to just reset those levels:

dist_df = dist_df.reset_index(level=[0,1])

In [28]:
df.reset_index(level=[0,1])

Out[28]:
            YEAR  MONTH  NI
datetime                     
2000-01-01  2000      1   NaN
2000-01-02  2000      1   NaN
2000-01-03  2000      1   NaN
2000-01-04  2000      1   NaN
2000-01-05  2000      1   NaN

you can pass the label names alternatively:

df.reset_index(level=['YEAR','MONTH'])

Another simple way would be to set columns for dataframe

consolidated_data.columns=country_master

ref: https://riptutorial.com/pandas/example/18695/how-to-change-multiindex-columns-to-standard-columns