Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Revert a frequency table

Let's assume you have a pandas DataFrame that holds frequency information like this:

data = [[1,1,2,3],
        [1,2,3,5],
        [2,1,6,1],
        [2,2,2,4]]
df = pd.DataFrame(data, columns=['id', 'time', 'CountX1', 'CountX2'])

# id    time    CountX1     CountX2
# 0     1   1   2   3
# 1     1   2   3   5
# 2     2   1   6   1
# 3     2   2   2   4

I am looking for a simple command (e.g. using pd.pivot or pd.melt()) to revert these frequencies to tidy data that should look like this:

id time variable
0   1   X1
0   1   X1
0   1   X2
0   1   X2
0   1   X2
1   1   X1
1   1   X1
1   1   X1
1   1   X2 ...  # 5x repeated
2   1   X1 ...  # 6x repeated
2   1   X2 ...  # 1x repeated
2   2   X1 ...  # 2x repeated
2   2   X2 ...  # 4x repeated
like image 913
user3637203 Avatar asked Jan 19 '26 03:01

user3637203


1 Answers

You need:

a = df.set_index(['id','time']).stack()
df = a.loc[a.index.repeat(a)].reset_index().rename(columns={'level_2':'a'}).drop(0, axis=1)
print(df)
    id  time        a
0    1     1  CountX1
1    1     1  CountX1
2    1     1  CountX2
3    1     1  CountX2
4    1     1  CountX2
5    1     2  CountX1
6    1     2  CountX1
7    1     2  CountX1
8    1     2  CountX2
9    1     2  CountX2
10   1     2  CountX2
11   1     2  CountX2
12   1     2  CountX2
13   2     1  CountX1
14   2     1  CountX1
15   2     1  CountX1
16   2     1  CountX1
17   2     1  CountX1
18   2     1  CountX1
19   2     1  CountX2
20   2     2  CountX1
21   2     2  CountX1
22   2     2  CountX2
23   2     2  CountX2
24   2     2  CountX2
25   2     2  CountX2

First solution was first deleted, because different ordering:

a = df.melt(['id','time'])
df = (a.loc[a.index.repeat(a['value'])]
       .drop('value', 1)
       .sort_values(['id', 'time'])
       .reset_index(drop=True))
like image 165
jezrael Avatar answered Jan 21 '26 18:01

jezrael



Donate For Us

If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!