I'm teaching myself OCaml, and the main resources I'm using for practice are some problem sets Cornell has made available from their 3110 class. One of the problems is to write a function to reverse an int (i.e: 1234 -> 4321, -1234 -> -4321, 2 -> 2, -10 -> -1 etc).
I have a working solution, but I'm concerned that it isn't exactly idiomatic OCaml:
let rev_int (i : int) : int =
let rec power cnt value =
if value / 10 = 0 then cnt
else power (10 * cnt) (value/10) in
let rec aux pow temp value =
if value <> 0 then aux (pow/10) (temp + (value mod 10 * pow)) (value / 10)
else temp in
aux (power 1 i) 0 i
It works properly in all cases as far as I can tell, but it just seems seriously "un-OCaml" to me, particularly because I'm running through the length of the int twice with two inner-functions. So I'm just wondering whether there's a more "OCaml" way to do this.
I would say, that the following is idiomatic enough.
(* [rev x] returns such value [y] that its decimal representation
is a reverse of decimal representation of [x], e.g.,
[rev 12345 = 54321] *)
let rev n =
let rec loop acc n =
if n = 0 then acc
else loop (acc * 10 + n mod 10) (n / 10) in
loop 0 n
But as Jeffrey said in a comment, your solution is quite idiomatic, although not the nicest one.
Btw, my own style, would be to write like this:
let rev n =
let rec loop acc = function
| 0 -> acc
| n -> loop (acc * 10 + n mod 10) (n / 10) in
loop 0 n
As I prefer pattern matching to if/then/else
. But this is a matter of mine personal taste.
I can propose you some way of doing it:
let decompose_int i =
let r = i / 10 in
i - (r * 10) , r
This function allows me to decompose the integer as if I had a list.
For instance 1234
is decomposed into 4
and 123
.
Then we reverse it.
let rec rev_int i = match decompose_int i with
| x , 0 -> 10 , x
| h , t ->
let (m,r) = rev_int t in
(10 * m, h * m + r)
The idea here is to return 10
, 100
, 1000
... and so on to know where to place the last digit.
What I wanted to do here is to treat them as I would treat lists, decompose_int
being a List.hd
and List.tl
equivalent.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With