I have a data.frame
and I want to calculate a performance metric (e.g. a quantile). However some columns of the data.frame
are with statistics that you would consider "negative" - an example:
r=seq(0,1,0.25)
apply(state.x77,2,function(x) quantile(x,probs = r))
Population Income Illiteracy Life Exp Murder HS Grad Frost Area
0% 365.0 3098.00 0.500 67.9600 1.400 37.80 0.00 1049.00
25% 1079.5 3992.75 0.625 70.1175 4.350 48.05 66.25 36985.25
50% 2838.5 4519.00 0.950 70.6750 6.850 53.25 114.50 54277.00
75% 4968.5 4813.50 1.575 71.8925 10.675 59.15 139.75 81162.50
100% 21198.0 6315.00 2.800 73.6000 15.100 67.30 188.00 566432.00
Income and life expectancy are positive. However, e.g. the murder rate is negative, the lower it is the better. I want exactly this result:
Population Income Illiteracy Life Exp Murder HS Grad Frost Area
0% 365.0 3098.00 2.800 67.9600 15.100 37.80 188.00 1049.00
25% 1079.5 3992.75 1.575 70.1175 10.675 48.05 139.75 36985.25
50% 2838.5 4519.00 0.950 70.6750 6.850 53.25 114.50 54277.00
75% 4968.5 4813.50 0.625 71.8925 4.350 59.15 66.25 81162.50
100% 21198.0 6315.00 0.500 73.6000 1.400 67.30 0.00 566432.00
I managed that using two sweep
-functions and one apply function. That is ugly as heck! Is there a more elegant way?
The dataset state.x77
is built-into R.
You can multiply each column by the respective weight in vector my_weight
. Then take the absolute value of the result. And there is no need to define a vector of probabilities since the quartiles are already quantile
's default.
my_weight <- c(1, 1, -1, 1, -1, 1, -1, 1)
res <- sapply(seq_along(as.data.frame(state.x77)), function(i)
abs(quantile(state.x77[, i]* my_weight[i])))
colnames(res) <- colnames(state.x77)
res
# Population Income Illiteracy Life Exp Murder HS Grad Frost Area
#0% 365.0 3098.00 2.800 67.9600 15.100 37.80 188.00 1049.00
#25% 1079.5 3992.75 1.575 70.1175 10.675 48.05 139.75 36985.25
#50% 2838.5 4519.00 0.950 70.6750 6.850 53.25 114.50 54277.00
#75% 4968.5 4813.50 0.625 71.8925 4.350 59.15 66.25 81162.50
#100% 21198.0 6315.00 0.500 73.6000 1.400 67.30 0.00 566432.00
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With