I am reverse engineering a game from 1999 and I came across a function which looks to be checking if the player is within range of a 3d point for the triggering of audio sources. The decompiler mangles the code pretty bad but I think I understand it.
// Position Y delta
v1 = * (float * )(this + 16) - LocalPlayerZoneEntry - > y;
// Position X delta
v2 = * (float * )(this + 20) - LocalPlayerZoneEntry - > x;
// Absolute value
if (v1 < 0.0)
v1 = -v1;
// Absolute value
if (v2 < 0.0)
v2 = -v2;
// What is going on here?
if (v1 <= v2)
v1 = v1 * 0.5;
else
v2 = v2 * 0.5;
// Z position delta
v3 = * (float * )(this + 24) - LocalPlayerZoneEntry - > z;
// Absolute value
if (v3 < 0.0)
v3 = -v3;
result = v3 + v2 + v1;
// Radius
if (result > * (float * )(this + 28))
return 0.0;
return result;
Interestingly enough, when in game, it seemed like the triggering was pretty inconsistent and would sometimes be quite a bit off depending on from which side I approached the trigger.
Does anyone have any idea if this was a common algorithm used back in the day?
Note: The types were all added by me so they may be incorrect. I assume that this is a function of type bool.
The best way to visualize a distance function (a metric) is to plot its unit sphere (the set of points at unit distance from origin -- the metric in question is norm induced).
First rewrite it in a more mathematical form:
N(x,y,z) = 0.5*|x| + |y| + |z| when |x| <= |y|
= |x| + 0.5*|y| + |z| otherwise
Let's do that for 2d (assume that z = 0
). The absolute values make the function symmetric in the four quadrants. The |x| <= |y|
condition makes it symmetric in all the eight sectors. Let's focus on the sector x > 0, y > 0, x <= y
. We want to find the curve when N(x,y,0) = 1
. For that sector it reduces to 0.5x + y = 1
, or y = 1 - 0.5x
. We can go and plot that line. For when x > 0, y > 0, x > y
, we get x = 1 - 0.5y
. Plotting it all gives the following unit 'circle':
For comparison, here is an Euclidean unit circle overlaid:
In the third dimension it behaves like a taxicab metric, effectively giving you a 'diamond' shaped sphere:
So yes, it is a cheap distance function, though it lacks rotational symmetries.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With