I've run a correlation matrix on a pandas DataFrame
:
df=pd.DataFrame( {'one':[0.1, .32, .2, 0.4, 0.8], 'two':[.23, .18, .56, .61, .12], 'three':[.9, .3, .6, .5, .3], 'four':[.34, .75, .91, .19, .21], 'zive': [0.1, .32, .2, 0.4, 0.8], 'six':[.9, .3, .6, .5, .3], 'drive':[.9, .3, .6, .5, .3]})
corrMatrix=df.corr()
corrMatrix
drive four one six three two zive
drive 1.00 -0.04 -0.75 1.00 1.00 0.24 -0.75
four -0.04 1.00 -0.49 -0.04 -0.04 0.16 -0.49
one -0.75 -0.49 1.00 -0.75 -0.75 -0.35 1.00
six 1.00 -0.04 -0.75 1.00 1.00 0.24 -0.75
three 1.00 -0.04 -0.75 1.00 1.00 0.24 -0.75
two 0.24 0.16 -0.35 0.24 0.24 1.00 -0.35
zive -0.75 -0.49 1.00 -0.75 -0.75 -0.35 1.00
Now, I want to write some code to return the columns that are perfectly correlated (ie correlation ==1) in groups.
Optimally, I would want this:
[['zive', 'one'], ['three', 'six', 'drive']]
I've written the below code, which gives me ['drive', 'one', 'six', 'three', 'zive']
, but as you can see, they are just a bag of columns that have some sort of perfect correlation with some other column-- it does not put them in a distinctive grouping with their perfectly correlated cousin columns.
correlatedCols=[]
for col in corrMatrix:
data=corrMatrix[col][corrMatrix[col]==1]
if len(data)>1:
correlatedCols.append(data.name)
correlatedCols
['drive','one', 'six', 'three', 'zive']
EDIT: Using the advice given by @Karl D., I get this:
cor = df.corr()
cor.loc[:,:] = np.tril(cor.values, k=-1)
cor = cor.stack()
cor[cor ==1]
six drive 1.00
three drive 1.00
six 1.00
zive one 1.00
..which is not quite what I want -- since [six, drive]
is not a grouping -- it's missing 'three'
.
Here is a naive approach:
df=pd.DataFrame( {'one':[0.1, .32, .2, 0.4, 0.8], 'two':[.23, .18, .56, .61, .12], 'three':[.9, .3, .6, .5, .3], 'four':[.34, .75, .91, .19, .21], 'zive': [0.1, .32, .2, 0.4, 0.8], 'six':[.9, .3, .6, .5, .3], 'drive':[.9, .3, .6, .5, .3]})
corrMatrix=df.corr()
corrMatrix.loc[:,:] = np.tril(corrMatrix, k=-1) # borrowed from Karl D's answer
already_in = set()
result = []
for col in corrMatrix:
perfect_corr = corrMatrix[col][corrMatrix[col] == 1].index.tolist()
if perfect_corr and col not in already_in:
already_in.update(set(perfect_corr))
perfect_corr.append(col)
result.append(perfect_corr)
Result:
>>> result
[['six', 'three', 'drive'], ['zive', 'one']]
You could do something like the following:
>>> cor = df.corr()
>>> cor.loc[:,:] = np.tril(cor, k=-1)
>>> cor = cor.stack()
>>> cor[cor > 0.9999]
three six 1
zive one 1
To match more closely your expected output you can do something like the following:
>>> cor[cor > 0.9999].to_dict().keys()
[('zive', 'one'), ('three', 'six')]
Explanation. First, I create a lower triangular version of the covariance matrix that excludes the diagonal (using numpy's tril
):
>>> cor.loc[:,:] = np.tril(cor.values, k=-1)
four one six three two zive
four 0.000000 -0.000000 -0.000000 -0.000000 0.000000 -0
one -0.489177 0.000000 -0.000000 -0.000000 -0.000000 0
six -0.039607 -0.747365 0.000000 0.000000 0.000000 -0
three -0.039607 -0.747365 1.000000 0.000000 0.000000 -0
two 0.159583 -0.351531 0.238102 0.238102 0.000000 -0
zive -0.489177 1.000000 -0.747365 -0.747365 -0.351531 0
And then I stack the dataframe:
>>> cor = cor.stack()
four four 0.000000
one -0.000000
six -0.000000
three -0.000000
two 0.000000
zive -0.000000
one four -0.489177
one 0.000000
six -0.000000
three -0.000000
two -0.000000
zive 0.000000
six four -0.039607
one -0.747365
six 0.000000
three 0.000000
two 0.000000
zive -0.000000
three four -0.039607
one -0.747365
six 1.000000
three 0.000000
two 0.000000
zive -0.000000
two four 0.159583
one -0.351531
six 0.238102
three 0.238102
two 0.000000
zive -0.000000
zive four -0.489177
one 1.000000
six -0.747365
three -0.747365
two -0.351531
zive 0.000000
And then I can just grab the rows that equal one.
Edit: I think this will get the form you want but it's not elegant:
>>> from itertools import chain
>>> cor.loc[:,:] = np.tril(cor, k=-1)
>>> cor = cor.stack()
>>> ones = cor[cor > 0.999].reset_index().loc[:,['level_0','level_1']]
>>> ones = ones.query('level_0 not in level_1')
>>> ones.groupby('level_0').agg(lambda x: set(chain(x.level_0,x.level_1))).values
[[set(['six', 'drive', 'three'])]
[set(['zive', 'one'])]]
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With