I have a table in DynamoDB:
Id: int, hash key
Name: string
(there are many more columns, but I omitted them)
Typically I just pull out and update items by their Id, and this schema works fine for that.
However, one of the requirements is to have an auto-completing drop down box based on the name. I want to be able to query all items in this DynamoDB table for Name columns starting with a query string.
The SQL way of solving this would be to just add an index on Name and write a query like SELECT Id FROM table WHERE Name LIKE 'query%', but I can't figure out a DynamoDB-friendly way of doing this.
I have considered a few ways to solve this:
Is there a simple solution to this issue?
The use case you described is not directly supported by DynamoDB's Query operation today - DynamoDB typically requires you to specify a hashkey then query on the range key accordingly.
However, there is a popular scatter-gather technique that is commonly used for usecase such as yours. In this case, you would add an attribute bucket_id
and create a global secondary index with bucket_id
as hash key, and Name
as the range key.
The bucket_id refers to a fixed range of IDs or numbers, with enough cardinality to ensure your global secondary index is well-distributed. For instance, bucket_id
could range from 0 to 99. Then when updating your base table, whenever a new entry is added, a random bucket_id
between 0 and 99 is assigned to it.
During your autocomplete query, the application would send 100 separate queries (scatter) for each bucket_id value (0 to 99) and use BEGINS_WITH
on the range key Name. After the results are retrieved, the application would have to combine the 100 sets of responses and re-sort as necessary (gather).
The above process may seem a bit cumbersome, but it allows your system/table to scale well by ensuring the load is evenly distributed over a fixed key range. You can increase the bucket_id range as appropriate. To save cost, you can choose to project KEYS_ONLY
onto your global secondary index, so cost of querying is minimized.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With