I am trying to reshape data from long to wide format in R. I would like to get both counts of occurrences of a type variable by ID and sums of the values of a second variable (val
) by ID and type as in the example below.
I was able to find answers for reshaping with either counts or sums but not for both simultaneously.
This is the original example data:
> df <- data.frame(id = c(1, 1, 1, 2, 2, 2),
+ type = c("A", "A", "B", "A", "B", "C"),
+ val = c(0, 1, 2, 0, 0, 4))
> df
id type val
1 1 A 0
2 1 A 1
3 1 B 2
4 2 A 0
5 2 B 0
6 2 C 4
The output I would like to obtain is the following:
id A.count B.count C.count A.sum B.sum C.sum
1 1 2 1 0 1 2 0
2 2 1 1 1 0 0 4
where the count
columns display the number of occurrences of type A, B and C and the sum
columns the sum of the values by type.
To achieve the counts I can, as suggested in this answer, use reshape2::dcast
with the default aggregation function, length
:
> require(reshape2)
> df.c <- dcast(df, id ~ type, value.var = "type", fun.aggregate = length)
> df.c
id A B C
1 1 2 1 0
2 2 1 1 1
Similarly, as suggested in this answer, I can also perform the reshape with the sums as output, this time using the sum
aggregation function in dcast
:
> df.s <- dcast(df, id ~ type, value.var = "val", fun.aggregate = sum)
> df.s
id A B C
1 1 1 2 0
2 2 0 0 4
I could merge the two:
> merge(x = df.c, y = df.s, by = "id", all = TRUE)
id A.x B.x C.x A.y B.y C.y
1 1 2 1 0 1 2 0
2 2 1 1 1 0 0 4
but is there a way of doing it all in one go (not necessarily with dcast
or reshape2
)?
From data.table v1.9.6, it is possible to cast multiple value.var columns and also cast by providing multiple fun.aggregate functions. See below:
library(data.table)
df <- data.table(df)
dcast(df, id ~ type, fun = list(length, sum), value.var = c("val"))
id val_length_A val_length_B val_length_C val_sum_A val_sum_B val_sum_C
1: 1 2 1 0 1 2 0
2: 2 1 1 1 0 0 4
Here is an approach with tidyverse
library(tidyverse)
df %>%
group_by(id, type) %>%
summarise(count = n(), Sum = sum(val)) %>%
gather(key, val, count:Sum) %>%
unite(typen, type, key, sep=".") %>%
spread(typen, val, fill = 0)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With