I am trying to use reshape to restructure my data set.
Here is a subset of my data, which is a 16 X 198 data frame. Every odd column is a list of 16 years, and and even column has values a different country.
Algeria.x Algeria.y Argentina.x Argentina.y
1 1985 37.48 1985 27.86
2 1986 36.26 1986 27.52
3 1987 35.04 1987 27.18
4 1988 33.82 1988 26.84
5 1989 32.60 1989 26.50
6 1990 NA 1990 25.50
7 1991 NA 1991 24.50
8 1992 NA 1992 23.50
9 1993 NA 1993 22.50
10 1994 NA 1994 21.50
11 1995 NA 1995 22.12
12 1996 NA 1996 22.74
13 1997 NA 1997 23.36
14 1998 NA 1998 23.98
15 1999 NA 1999 24.60
16 2000 NA 2000 NA
I would like to reshape the data so that it has three columns. The first for country name, the second for year, and the third for value. This would be a long matrix that is 1584 x 3.
I would use the stack
function twice, after splitting the data into two data.frames: one for the years and one for the values:
# split the data into two data.frames
years.df <- df[, seq(from = 1, to = ncol(df), by = 2)]
values.df <- df[, seq(from = 2, to = ncol(df), by = 2)]
# remove ".x" and ".y" at the end of the country names
names(years.df) <- sub("\\.x$", "", names(years.df))
names(values.df) <- sub("\\.y$", "", names(values.df))
# stack each data.frame into a two-column data.frame
years.stack <- stack(years.df)
values.stack <- stack(values.df)
# gather everything into a single data.frame
final.df <- data.frame(country = years.stack$ind,
year = years.stack$value,
value = values.stack$value)
final.df
# country year value
# 1 Algeria 1985 37.48
# 2 Algeria 1986 36.26
# 3 Algeria 1987 35.04
# 4 Algeria 1988 33.82
# 5 Algeria 1989 32.60
# 6 Algeria 1990 NA
# 7 Algeria 1991 NA
# 8 Algeria 1992 NA
# 9 Algeria 1993 NA
# 10 Algeria 1994 NA
# 11 Algeria 1995 NA
# 12 Algeria 1996 NA
# 13 Algeria 1997 NA
# 14 Algeria 1998 NA
# 15 Algeria 1999 NA
# 16 Algeria 2000 NA
# 17 Argentina 1985 27.86
# 18 Argentina 1986 27.52
# 19 Argentina 1987 27.18
# 20 Argentina 1988 26.84
# 21 Argentina 1989 26.50
# 22 Argentina 1990 25.50
# 23 Argentina 1991 24.50
# 24 Argentina 1992 23.50
# 25 Argentina 1993 22.50
# 26 Argentina 1994 21.50
# 27 Argentina 1995 22.12
# 28 Argentina 1996 22.74
# 29 Argentina 1997 23.36
# 30 Argentina 1998 23.98
# 31 Argentina 1999 24.60
# 32 Argentina 2000 NA
One liner using the base function reshape
.
reshape(dat, varying = 1:4, direction = 'long')
With such a small data frame I think I'd piece this together simply by tearing apart the vectors of the original:
#read in your data
dat <- read.table(text=" Algeria.x Algeria.y Argentina.x Argentina.y
1 1985 37.48 1985 27.86
2 1986 36.26 1986 27.52
3 1987 35.04 1987 27.18
4 1988 33.82 1988 26.84
5 1989 32.60 1989 26.50
6 1990 NA 1990 25.50
7 1991 NA 1991 24.50
8 1992 NA 1992 23.50
9 1993 NA 1993 22.50
10 1994 NA 1994 21.50
11 1995 NA 1995 22.12
12 1996 NA 1996 22.74
13 1997 NA 1997 23.36
14 1998 NA 1998 23.98
15 1999 NA 1999 24.60
16 2000 NA 2000 NA")
The solution:
dat2 <- data.frame( #tear apart original vectors & piece 'em together
country_name = rep(c("Algeria", "Argentina"), each = nrow(dat)),
year = unlist(dat[, c(1, 3)]),
value = unlist(dat[, c(2, 4)])
)
rownames(dat2) <- 1:nrow(dat2) #give proper row names
dat2
Assuming your dataset is called "df
": Original answer (using the "reshape" package):
library(reshape)
# make a new column called year, and select only even columns
df = data.frame(year=1985:2000,
df[, seq(from=2, to=length(names(df)), by=2)])
# optional--for removing ".y" from country name
names(df) = sub("\\.y$", "", names(df))
# "melt" your dataset
m.df2 = melt(df, id=1)
You can make use of the fact that all countries have the same year value, thus making any of the ".x
" columns a potential id.var
for melt
ing your data.frame
.
A little bit of cleanup is still required.
library(reshape2)
names(df) <- gsub(".y", "", names(df))
df_long <- setNames(melt(df[, c("Algeria.x", grep(".x", names(df),
invert=TRUE, value=TRUE))],
id.vars="Algeria.x"), c("Year", "Country", "Value"))
list(head(df_long), tail(df_long))
# [[1]]
# Year Country Value
# 1 1985 Algeria 37.48
# 2 1986 Algeria 36.26
# 3 1987 Algeria 35.04
# 4 1988 Algeria 33.82
# 5 1989 Algeria 32.60
# 6 1990 Algeria NA
#
# [[2]]
# Year Country Value
# 27 1995 Argentina 22.12
# 28 1996 Argentina 22.74
# 29 1997 Argentina 23.36
# 30 1998 Argentina 23.98
# 31 1999 Argentina 24.60
# 32 2000 Argentina NA
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With