I want to resample a DataFrame with a multi-index containing both a datetime column and some other key. The Dataframe looks like:
import pandas as pd
from StringIO import StringIO
csv = StringIO("""ID,NAME,DATE,VAR1
1,a,03-JAN-2013,69
1,a,04-JAN-2013,77
1,a,05-JAN-2013,75
2,b,03-JAN-2013,69
2,b,04-JAN-2013,75
2,b,05-JAN-2013,72""")
df = pd.read_csv(csv, index_col=['DATE', 'ID'], parse_dates=['DATE'])
df.columns.name = 'Params'
Because resampling is only allowed on datatime indexes, i thought unstacking the other index column would help. And indeed it does, but i cant stack it again afterwards.
print df.unstack('ID').resample('W-THU')
Params VAR1
ID 1 2
DATE
2013-01-03 69 69.0
2013-01-10 76 73.5
But then stacking 'ID' again results in an index-error:
print df.unstack('ID').resample('W-THU').stack('ID')
IndexError: index 0 is out of bounds for axis 0 with size 0
Strangely enough, i can stack the other column level with both:
print df.unstack('ID').resample('W-THU').stack(0)
and
print df.unstack('ID').resample('W-THU').stack('Params')
The index-error also occurs if i reorder (swap) both column levels. Does anyone know how to overcome this issue?
The example unstacks a non-numerical column 'NAME' which is silently dropped but causes problems during re-stacking. The code below worked for me
print df[['VAR1']].unstack('ID').resample('W-THU').stack('ID')
Params VAR1
DATE ID
2013-01-03 A 69.0
B 69.0
2013-01-10 A 76.0
B 73.5
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With