Is it somehow possible to use resample
on irregularly spaced data? (I know that the documentation says it's for "resampling of regular time-series data", but I wanted to try if it works on irregular data, too. Maybe it doesn't, or maybe I am doing something wrong.)
In my real data, I have generally 2 samples per hour, the time difference between them ranging usually from 20 to 40 minutes. So I was hoping to resample them to a regular hourly series.
To test if I am using it right, I used some random list of dates that I already had, so it may not be a best example but at least a solution that works for it will be very robust. here it is:
fraction number time
0 0.729797 0 2014-10-23 15:44:00
1 0.141084 1 2014-10-30 19:10:00
2 0.226900 2 2014-11-05 21:30:00
3 0.960937 3 2014-11-07 05:50:00
4 0.452835 4 2014-11-12 12:20:00
5 0.578495 5 2014-11-13 13:57:00
6 0.352142 6 2014-11-15 05:00:00
7 0.104814 7 2014-11-18 07:50:00
8 0.345633 8 2014-11-19 13:37:00
9 0.498004 9 2014-11-19 22:47:00
10 0.131665 10 2014-11-24 15:28:00
11 0.654018 11 2014-11-26 10:00:00
12 0.886092 12 2014-12-04 06:37:00
13 0.839767 13 2014-12-09 00:50:00
14 0.257997 14 2014-12-09 02:00:00
15 0.526350 15 2014-12-09 02:33:00
Now I want to resample these for example monthly:
df_new = df.set_index(pd.DatetimeIndex(df['time']))
df_new['fraction'] = df.fraction.resample('M',how='mean')
df_new['number'] = df.number.resample('M',how='mean')
But I get TypeError: Only valid with DatetimeIndex, TimedeltaIndex or PeriodIndex, but got an instance of 'RangeIndex'
- unless I did something wrong with assigning the datetime index, it must be due to the irregularity?
So my questions are:
(I only see a solution in first reindexing the data to get finer intervals, interpolate the values in between and then reindexing it to hourly interval. If it is so, then a question regarding the correct implementation of reindex will follow shortly.)
Pandas dataframe.resample() function is primarily used for time series data. A time series is a series of data points indexed (or listed or graphed) in time order. Most commonly, a time series is a sequence taken at successive equally spaced points in time.
Pandas is one of those packages and makes importing and analyzing data much easier. Pandas dataframe.resample () function is primarily used for time series data. A time series is a series of data points indexed (or listed or graphed) in time order. Most commonly, a time series is a sequence taken at successive equally spaced points in time.
Resampling generates a unique sampling distribution on the basis of the actual data. We can apply various frequency to resample our time series data. This is a very important technique in the field of analytics. There are many other types of time series frequency available.
We would have to upsample the frequency from monthly to daily and use an interpolation scheme to fill in the new daily frequency. The Pandas library provides a function called resample () on the Series and DataFrame objects. This can be used to group records when downsampling and making space for new observations when upsampling.
You don't need to explicitly use DatetimeIndex
, just set 'time'
as the index and pandas will take care of the rest, so long as your 'time'
column has been converted to datetime using pd.to_datetime
or some other method. Additionally, you don't need to resample each column individually if you're using the same method; just do it on the entire DataFrame.
# Convert to datetime, if necessary.
df['time'] = pd.to_datetime(df['time'])
# Set the index and resample (using month start freq for compact output).
df = df.set_index('time')
df = df.resample('MS').mean()
The resulting output:
fraction number
time
2014-10-01 0.435441 0.5
2014-11-01 0.430544 6.5
2014-12-01 0.627552 13.5
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With