I have a 3x3 matrix, of which I compute inverse. The inverse can be written legibly only when some subexpressions are replaced by new symbols, because they appear multiple times. Can I have sympy try hard to find those subexpressions and replace them? I tried the following, without success:
from sympy import *
Ex, Ez, nuxy, nuxz = symbols('E_x E_z nu_xy nu_xz')
# compliance matrix for cross-anisotropic material
compl = Matrix([[1/Ex, -nuxy/Ex, -nuxz/Ez],
[-nuxy/Ex, 1/Ex, -nuxz/Ez],
[-nuxz/Ex, -nuxz/Ex, 1/Ez]])
# stiffness matrix
stiff = compl.inv()
# symbols I want to introduce
m, e = symbols('m e')
meSubs = {Ex/Ez: e, (1 - nuxy - 2*e*nuxz**2): m} # instead of these subexpressions
# stiff.simplify() returns None, is that a bug? that's why I apply simplify together with subs here:
stiff.applyfunc(lambda x: simplify(x.subs(meSubs)))
print stiff
Using sympy 0.6.7 (I could upgrade, if needed).
EDIT:
I upgraded to 0.7.1-git (cf9c01f8f9b4b749a7f59891f546646e4b38e580 to be precise), and run (thanks to @PreludeAndFugue for suggestion):
from sympy import *
Ex,Ez,nuxy,nuxz,m=symbols('E_x E_z nu_xy nu_xz m')
compl=Matrix([[1/Ex,-nuxy/Ex,-nuxz/Ez],[-nuxy/Ex,1/Ex,-nuxz/Ez],[-nuxz/Ex,-nuxz/Ex,1/Ez]])
stiff=compl.inv()
stiff.simplify()
stiff.subs({-nuxy-2*nuxz**2+1:m}) # tried other rearrangements of the equality, as well, same result.
stiff.applyfunc(lambda x: together(expand(x)))
pprint(stiff)
obtaining
⎡ ⎛ 2 ⎞ ⎛ 2⎞ ⎤
⎢ Eₓ⋅⎝ν_xz - 1⎠ -Eₓ⋅⎝-ν_xy - ν_xz ⎠ Eₓ⋅ν_xz ⎥
⎢ ────────────────────────────────── ──────────────────────────────────── ───────────────────⎥
⎢ 2 2 2 2 2 2 2 ⎥
⎢ ν_xy + 2⋅ν_xy⋅ν_xz + 2⋅ν_xz - 1 - ν_xy - 2⋅ν_xy⋅ν_xz - 2⋅ν_xz + 1 -ν_xy - 2⋅ν_xz + 1⎥
⎢ ⎥
⎢ ⎛ 2⎞ ⎛ 2 ⎞ ⎥
⎢ -Eₓ⋅⎝-ν_xy - ν_xz ⎠ Eₓ⋅⎝ν_xz - 1⎠ Eₓ⋅ν_xz ⎥
⎢──────────────────────────────────── ────────────────────────────────── ───────────────────⎥
⎢ 2 2 2 2 2 2 2 ⎥
⎢- ν_xy - 2⋅ν_xy⋅ν_xz - 2⋅ν_xz + 1 ν_xy + 2⋅ν_xy⋅ν_xz + 2⋅ν_xz - 1 -ν_xy - 2⋅ν_xz + 1⎥
⎢ ⎥
⎢ E_z⋅ν_xz E_z⋅ν_xz E_z⋅(ν_xy - 1) ⎥
⎢ ─────────────────── ─────────────────── ────────────────── ⎥
⎢ 2 2 2 ⎥
⎣ -ν_xy - 2⋅ν_xz + 1 -ν_xy - 2⋅ν_xz + 1 ν_xy + 2⋅ν_xz - 1 ⎦
Hm, so why does not get "-ν_xy - 2⋅ν_xz² + 1" replaced with m?
Both of your substitutions fail because the patterns do not exist in your matrix. Let's look at them one at a time:
x.subs(x/y, z)
is unchangede
that appears in 1 - nuxy - 2*e*nuxz**2
so that expression is never matched, either.@asmeurer showed that the literal 1 - nuxy - 2*nuxz**2
can be replaced, but it appears, too, as a factor in some denominators. The more complicated replacement can be done by checking if the patterns evenly divides an expression.
Let's make a function that will do that replacement:
>>> from sympy import *
>>> t = 1 - nuxy - 2*e*nuxz**2
>>> def do(x):
... w, r = div(x, t)
... if not r:
... return m*w
... return x
Now we will apply this to each element of the matrix:
>>> stiff.applyfunc(lambda x: factor_terms(bottom_up(x, do)))
Matrix([
[ -E_x*(nu_xz**2 - 1)/(m*(nu_xy + 1)), E_x*(nu_xy + nu_xz**2)/(m*(nu_xy + 1)), E_x*nu_xz/m],
[E_x*(nu_xy + nu_xz**2)/(m*(nu_xy + 1)), -E_x*(nu_xz**2 - 1)/(m*(nu_xy + 1)), E_x*nu_xz/m],
[ E_z*nu_xz/m, E_z*nu_xz/m, -E_z*(nu_xy - 1)/m]])
With complicated expressions/matrices, it is sometimes good to get an overview of the structure by using cse
:
>>> cse(stiff)
([(x0, nu_xz**2), (x1, E_x*x0), (x2, 2*x0), (x3, x2 - 1), (x4, 1/(nu_xy**2 + nu_xy*x2 + x3)), (x5, x4*(-E_x + x1)), (x6, x4*(-E_x*nu_xy - x1)), (x7, 1/(nu_xy + x3)), (x8, nu_xz*x7), (x9, -E_x*x8), (x10, -E_z*x8)], [Matrix([
[ x5, x6, x9],
[ x6, x5, x9],
[x10, x10, x7*(E_z*nu_xy - E_z)]])])
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With