Using Canopy and Pandas, I have data frame a which is defined by:
a=pd.read_csv('text.txt')
df=pd.DataFrame(a)
df.columns=["test"]
test.txt is a single column file that contains a list of string that contains text, numerical and punctuation.
Assuming df looks like:
test
%hgh&12
abc123!!!
porkyfries
I want my results to be:
test
hgh12
abc123
porkyfries
Effort so far:
from string import punctuation /-- import punctuation list from python itself
a=pd.read_csv('text.txt')
df=pd.DataFrame(a)
df.columns=["test"] /-- define the dataframe
for p in list(punctuation):
...: df2=df.med.str.replace(p,'')
...: df2=pd.DataFrame(df2);
...: df2
The command above basically just returns me with the same data set. Appreciate any leads.
Edit: Reason why I am using Pandas is because data is huge, spanning to bout 1M rows, and future usage of the coding will be applied to list that go up to 30M rows. Long story short, I need to clean data in a very efficient manner for big data sets.
Use replace
with correct regex would be easier:
In [41]:
import pandas as pd
pd.set_option('display.notebook_repr_html', False)
df = pd.DataFrame({'text':['test','%hgh&12','abc123!!!','porkyfries']})
df
Out[41]:
text
0 test
1 %hgh&12
2 abc123!!!
3 porkyfries
[4 rows x 1 columns]
use regex with the pattern which means not alphanumeric/whitespace
In [49]:
df['text'] = df['text'].str.replace('[^\w\s]','')
df
Out[49]:
text
0 test
1 hgh12
2 abc123
3 porkyfries
[4 rows x 1 columns]
For removing punctuation from a text column in your dataframme:
In:
import re
import string
rem = string.punctuation
pattern = r"[{}]".format(rem)
pattern
Out:
'[!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~]'
In:
df = pd.DataFrame({'text':['book...regh', 'book...', 'boo,', 'book. ', 'ball, ', 'ballnroll"', '"rope"', 'rick % ']})
df
Out:
text
0 book...regh
1 book...
2 boo,
3 book.
4 ball,
5 ballnroll"
6 "rope"
7 rick %
In:
df['text'] = df['text'].str.replace(pattern, '')
df
You can replace the pattern with your desired character. Ex - replace(pattern, '$')
Out:
text
0 bookregh
1 book
2 boo
3 book
4 ball
5 ballnroll
6 rope
7 rick
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With