I got stucked with a data transformation task in pyspark. I want to replace all values of one column in a df with key-value-pairs specified in a dictionary.
dict = {'A':1, 'B':2, 'C':3}
My df looks like this:
+-----------++-----------+
| col1|| col2|
+-----------++-----------+
| B|| A|
| A|| A|
| A|| A|
| C|| B|
| A|| A|
+-----------++-----------+
Now I want to replace all values of col1 by the key-values pairs defined in dict.
Desired Output:
+-----------++-----------+
| col1|| col2|
+-----------++-----------+
| 2|| A|
| 1|| A|
| 1|| A|
| 3|| B|
| 1|| A|
+-----------++-----------+
I tried
df.na.replace(dict, 1).show()
but that also replaces the values on col2, which shall stay untouched.
Thank you for your help. Greetings :)
You can replace column values of PySpark DataFrame by using SQL string functions regexp_replace(), translate(), and overlay() with Python examples.
The function withColumn is called to add (or replace, if the name exists) a column to the data frame. The function regexp_replace will generate a new column by replacing all substrings that match the pattern.
As I said in the beginning, PySpark doesn't have a Dictionary type instead it uses MapType to store the dictionary object, below is an example of how to create a DataFrame column MapType using pyspark. sql. types. StructType .
Introduction to PySpark explode. PYSPARK EXPLODE is an Explode function that is used in the PySpark data model to explode an array or map-related columns to row in PySpark. It explodes the columns and separates them not a new row in PySpark. It returns a new row for each element in an array or map.
Your data:
print df
DataFrame[col1: string, col2: string]
df.show()
+----+----+
|col1|col2|
+----+----+
| B| A|
| A| A|
| A| A|
| C| B|
| A| A|
+----+----+
diz = {"A":1, "B":2, "C":3}
Convert values of your dictionary from integer to string, in order to not get errors of replacing different types:
diz = {k:str(v) for k,v in zip(diz.keys(),diz.values())}
print diz
{'A': '1', 'C': '3', 'B': '2'}
Replace value of col1
df2 = df.na.replace(diz,1,"col1")
print df2
DataFrame[col1: string, col2: string]
df2.show()
+----+----+
|col1|col2|
+----+----+
| 2| A|
| 1| A|
| 1| A|
| 3| B|
| 1| A|
+----+----+
If you need to cast your values from String to Integer
from pyspark.sql.types import *
df3 = df2.select(df2["col1"].cast(IntegerType()),df2["col2"])
print df3
DataFrame[col1: int, col2: string]
df3.show()
+----+----+
|col1|col2|
+----+----+
| 2| A|
| 1| A|
| 1| A|
| 3| B|
| 1| A|
+----+----+
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With