How could I Replace a NA with mean of its previous and next rows in a fast manner?
name grade
1 A 56
2 B NA
3 C 70
4 D 96
such that B's grade would be 63.
Or you may try na.approx
from package zoo
: "Missing values (NAs) are replaced by linear interpolation"
library(zoo)
x <- c(56, NA, 70, 96)
na.approx(x)
# [1] 56 63 70 96
This also works if you have more than one consecutive NA
:
vals <- c(1, NA, NA, 7, NA, 10)
na.approx(vals)
# [1] 1.0 3.0 5.0 7.0 8.5 10.0
na.approx
is based on the base
function approx
, which may be used instead:
vals <- c(1, NA, NA, 7, NA, 10)
xout <- seq_along(vals)
x <- xout[!is.na(vals)]
y <- vals[!is.na(vals)]
approx(x = x, y = y, xout = xout)$y
# [1] 1.0 3.0 5.0 7.0 8.5 10.0
Assume you have a data.frame df
like this:
> df
name grade
1 A 56
2 B NA
3 C 70
4 D 96
5 E NA
6 F 95
Then you can use the following:
> ind <- which(is.na(df$grade))
> df$grade[ind] <- sapply(ind, function(i) with(df, mean(c(grade[i-1], grade[i+1]))))
> df
name grade
1 A 56
2 B 63
3 C 70
4 D 96
5 E 95.5
6 F 95
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With