I'm trying to reduce noise in a binary python array by removing all completely isolated single cells, i.e. setting "1" value cells to 0 if they are completely surrounded by other "0"s. I have been able to get a working solution by removing blobs with sizes equal to 1 using a loop, but this seems like a very inefficient solution for large arrays:
import numpy as np
import scipy.ndimage as ndimage
import matplotlib.pyplot as plt
# Generate sample data
square = np.zeros((32, 32))
square[10:-10, 10:-10] = 1
np.random.seed(12)
x, y = (32*np.random.random((2, 20))).astype(np.int)
square[x, y] = 1
# Plot original data with many isolated single cells
plt.imshow(square, cmap=plt.cm.gray, interpolation='nearest')
# Assign unique labels
id_regions, number_of_ids = ndimage.label(square, structure=np.ones((3,3)))
# Set blobs of size 1 to 0
for i in xrange(number_of_ids + 1):
if id_regions[id_regions==i].size == 1:
square[id_regions==i] = 0
# Plot desired output, with all isolated single cells removed
plt.imshow(square, cmap=plt.cm.gray, interpolation='nearest')
In this case, eroding and dilating my array won't work as it will also remove features with a width of 1. I feel the solution lies somewhere within the scipy.ndimage package, but so far I haven't been able to crack it. Any help would be greatly appreciated!
You can use the pop() method to remove an element from the array.
np. delete(ndarray, index, axis): Delete items of rows or columns from the NumPy array based on given index conditions and axis specified, the parameter ndarray is the array on which the manipulation will happen, the index is the particular rows based on conditions to be deleted, axis=0 for removing rows in our case.
Using the NumPy function np. delete() , you can delete any row and column from the NumPy array ndarray . Specify the axis (dimension) and position (row number, column number, etc.). It is also possible to select multiple rows and columns using a slice or a list.
NumPy: squeeze() function The squeeze() function is used to remove single-dimensional entries from the shape of an array. Input data. Selects a subset of the single-dimensional entries in the shape. If an axis is selected with shape entry greater than one, an error is raised.
A belated thanks to both Jaime and Kazemakase for their replies. The manual neighbour-checking method did remove all isolated patches, but also removed patches attached to others by one corner (i.e. to the upper-right of the square in the sample array). The summed area table works perfectly and is very fast on the small sample array, but slows down on larger arrays.
I ended up following a approach using ndimage which seems to work efficiently for very large and sparse arrays (0.91 sec for 5000 x 5000 array vs 1.17 sec for summed area table approach). I first generated a labelled array of unique IDs for each discrete region, calculated sizes for each ID, masked the size array to focus only on size == 1 blobs, then index the original array and set IDs with a size == 1 to 0:
def filter_isolated_cells(array, struct):
""" Return array with completely isolated single cells removed
:param array: Array with completely isolated single cells
:param struct: Structure array for generating unique regions
:return: Array with minimum region size > 1
"""
filtered_array = np.copy(array)
id_regions, num_ids = ndimage.label(filtered_array, structure=struct)
id_sizes = np.array(ndimage.sum(array, id_regions, range(num_ids + 1)))
area_mask = (id_sizes == 1)
filtered_array[area_mask[id_regions]] = 0
return filtered_array
# Run function on sample array
filtered_array = filter_isolated_cells(square, struct=np.ones((3,3)))
# Plot output, with all isolated single cells removed
plt.imshow(filtered_array, cmap=plt.cm.gray, interpolation='nearest')
Result:
You can manually check the neighbors and avoid the loop using vectorization.
has_neighbor = np.zeros(square.shape, bool)
has_neighbor[:, 1:] = np.logical_or(has_neighbor[:, 1:], square[:, :-1] > 0) # left
has_neighbor[:, :-1] = np.logical_or(has_neighbor[:, :-1], square[:, 1:] > 0) # right
has_neighbor[1:, :] = np.logical_or(has_neighbor[1:, :], square[:-1, :] > 0) # above
has_neighbor[:-1, :] = np.logical_or(has_neighbor[:-1, :], square[1:, :] > 0) # below
square[np.logical_not(has_neighbor)] = 0
That way looping over the square is performed internally by numpy, which is rather more efficient than looping in python. There are two drawbacks of this solution:
has_neighbor
array might consume too much memory. In this case you could loop over sub-arrays of smaller size (trade-off between python loops and vectorization).I have no experience with ndimage, so there may be a better solution built in somewhere.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With