I have a dataframe that looks like this:
         level_0              level_1 Repo Averages for 27 Jul 2018
0  Business Date           Instrument                           Ccy
1     27/07/2018  GC_AUSTRIA_SUB_10YR                           EUR
2     27/07/2018    R_RAGB_1.15_10/18                           EUR
3     27/07/2018    R_RAGB_4.35_03/19                           EUR
4     27/07/2018    R_RAGB_1.95_06/19                           EUR
I am trying to get rid of the top row and only keep
   Business Date           Instrument         Ccy
0     27/07/2018  GC_AUSTRIA_SUB_10YR         EUR
1     27/07/2018    R_RAGB_1.15_10/18         EUR
2     27/07/2018    R_RAGB_4.35_03/19         EUR
3     27/07/2018    R_RAGB_1.95_06/19         EUR
I tried df.columns.droplevel(0)  but not successful  any help is more than welcome
You can try so:
df.columns = df.iloc[0]
df = df.reindex(df.index.drop(0)).reset_index(drop=True)
df.columns.name = None
Output:
  Business Date           Instrument  Ccy
0    27/07/2018  GC_AUSTRIA_SUB_10YR  EUR
1    27/07/2018    R_RAGB_1.15_10/18  EUR
2    27/07/2018    R_RAGB_4.35_03/19  EUR
3    27/07/2018    R_RAGB_1.95_06/19  EUR
                        You can try using slicing.
df = df[1:]
This will remove the first row of your dataframe.
You can take advantage of the parameter header (Read here more about the header parameter in pandas).
Let's say that you have the following dataset
df = pd.read_csv("Prices.csv")
print(df)
That outputs
              0       1     2         3         4
0      DATA      SESSAO  HORA  PRECO_PT  PRECO_ES
1      1/1/2020  0       1     41,88     41,88   
2      1/1/2020  0       2     38,60     38,60   
3      1/1/2020  0       3     36,55     36,55 
By simply passing the header = 0 like this
df = pd.read_csv("Prices.csv", header=0)
print(df)
You will get what you want
           DATA  SESSAO  HORA PRECO_PT PRECO_ES
0      1/1/2009  0       1     55,01    55,01  
1      1/1/2009  0       2     56,13    56,13  
2      1/1/2009  0       3     50,59    50,59  
3      1/1/2009  0       4     45,83    45,83  
4      1/1/2009  0       5     42,07    41,90 
                        If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With