Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Remove special characters in pandas dataframe

This seems like an inherently simple task but I am finding it very difficult to remove the '' from my entire data frame and return the numeric values in each column, including the numbers that did not have ''. The dateframe includes hundreds of more columns and looks like this in short:

Time            A1      A2
2.0002546296    1499    1592
2.0006712963    1252    1459
2.0902546296    1731    2223
2.0906828704    1691    1904
2.1742245370    2364    3121
2.1764699074    2096    1942
2.7654050926    *7639*  *8196*
2.7658564815    *7088*  *7542*
2.9048958333    *8736*  *8459*
2.9053125000    *7778*  *7704*
2.9807175926    *6612*  *6593*
3.0585763889    *8520*  *9122*

I have not written it to iterate over every column in df yet but as far as the first column goes I have come up with this

df['A1'].str.replace('*','').astype(float)

which yields

0        NaN
1        NaN
2        NaN
3        NaN
4        NaN
5        NaN
6        NaN
7        NaN
8        NaN
9        NaN
10       NaN
11       NaN
12       NaN
13       NaN
14       NaN
15       NaN
16       NaN
17       NaN
18       NaN
19    7639.0
20    7088.0
21    8736.0
22    7778.0
23    6612.0
24    8520.0

Is there a very easy way to just remove the '*' in the dataframe in pandas?

like image 216
RageQuilt Avatar asked Jul 09 '16 03:07

RageQuilt


1 Answers

use replace which applies on whole dataframe :

df
Out[14]: 
       Time      A1      A2
0  2.000255    1499    1592
1  2.176470    2096    1942
2  2.765405  *7639*  *8196*
3  2.765856  *7088*  *7542*
4  2.904896  *8736*  *8459*
5  2.905312  *7778*  *7704*
6  2.980718  *6612*  *6593*
7  3.058576  *8520*  *9122*

df=df.replace('\*','',regex=True).astype(float)

df
Out[16]: 
       Time    A1    A2
0  2.000255  1499  1592
1  2.176470  2096  1942
2  2.765405  7639  8196
3  2.765856  7088  7542
4  2.904896  8736  8459
5  2.905312  7778  7704
6  2.980718  6612  6593
7  3.058576  8520  9122
like image 97
shivsn Avatar answered Oct 13 '22 06:10

shivsn