My dataframe has subcategory, under each category (cat
, dog
, bird
), stats information is presented. I need to remove the rows if they contain info in count
and freq
, and only keep rows with sd
and mean
values. Some values are NaN
.
ValueError
occurs in my codes.
df:
var stats A B C
cat mean 2 3 4
NaN sd 2 1 3
NaN count 5 2 6
NaN freq 3 1 19
dog mean 8 1 2
NaN sd 2 1 3
NaN count 4 6 1
NaN freq 3 1 19
bird mean 2 3 4
NaN sd 2 1 3
NaN count 5 2 6
NaN freq NaN NaN NaN
My codes:
rows = ['count', 'freq']
df = [df.stats != rows]
Expected outcome
var stats A B C
cat mean 2 3 4
NaN sd 2 1 3
dog mean 8 1 2
NaN sd 2 1 3
bird mean 2 3 4
NaN sd 2 1 3
error:
File "pandas/_libs/lib.pyx", line 805, in pandas._libs.lib.vec_compare
(pandas/_libs/lib.c:14288)
ValueError: Arrays were different lengths: 819 vs 9
I am not sure how to check the array length, but in my excel spreadsheet, all columns and rows have the same length. Is this error caused by NaN/empty cell in my data?
Thanks!
!=
will not work here. Use pd.Series.isin
to obtain a mask you'll then use to filter your dataframe.
m = ~df.stats.isin(['count', 'freq'])
print(m)
0 True
1 True
2 False
3 False
4 True
5 True
6 False
7 False
8 True
9 True
10 False
11 False
Name: stats, dtype: bool
print(df[m])
var stats A B C
0 cat mean 2.0 3.0 4.0
1 NaN sd 2.0 1.0 3.0
4 dog mean 8.0 1.0 2.0
5 NaN sd 2.0 1.0 3.0
8 bird mean 2.0 3.0 4.0
9 NaN sd 2.0 1.0 3.0
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With