I got trouble with understanding regexp mechanizm in ElasticSearch. I have documents that represent property units:
{
"Unit" :
{
"DailyAvailablity" :
"UIAOUUUUUUUIAAAAAAAAAAAAAAAAAOUUUUIAAAAOUUUIAOUUUUUUUUUUUUUUUUUUUUUUUUUUIAAAAAAAAAAAAAAAAAAAAAAOUUUUUUUUUUIAAAAAOUUUUUUUUUUUUUIAAAAOUUUUUUUUUUUUUIAAAAAAAAOUUUUUUIAAAAAAAAAOUUUUUUUUUUUUUUUUUUIUUUUUUUUIUUUUUUUUUUUUUUIAAAOUUUUUUUUUUUUUIUUUUIAOUUUUUUUUUUUUUUUUUUUUUUUUUUUUUIAAAAAAAAAAAAOUUUUUUUUUUUUUUUUUUUUIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
}
}
DailyAvailability field codes availability of property by days for the next two years from today. 'A' means available, 'U' unabailable, 'I' can check in, 'O' can check out. How can I write regexp filter to get all units that are available in particular dates?
I tried to find the 'A' substring with particular length and offset in DailyAvailability field. For example to find units that would be available for 7 days in 7 days from today:
{
"query": {
"bool": {
"filter": [
{
"regexp": { "Unit.DailyAvailability": {"value": ".{7}a{7}.*" } }
}
]
}
}
}
This query returns for instance unit with DateAvailability that starts from "UUUUUUUUUUUUUUUUUUUIAA", but contains suitable sequences somehere inside the field. How can I anchor regexp for entire source string? ES docs say that lucene regex should be anchored by default.
P.S. I have tried '^.{7}a{7}.*$'
. Returns empty set.
It looks like you are using text
datatype to store Unit.DailyAvailability
(which is also the default one for strings if you are using dynamic mapping). You should consider using keyword
datatype instead.
Let me explain in a bit more detail.
text
field?What happens with text
datatype is that the data gets analyzed for full-text search. It does some transformations like lowercasing and splitting into tokens.
Let's try to use the Analyze API against your input:
POST _analyze
{
"text": "UIAOUUUUUUUIAAAAAAAAAAAAAAAAAOUUUUIAAAAOUUUIAOUUUUUUUUUUUUUUUUUUUUUUUUUUIAAAAAAAAAAAAAAAAAAAAAAOUUUUUUUUUUIAAAAAOUUUUUUUUUUUUUIAAAAOUUUUUUUUUUUUUIAAAAAAAAOUUUUUUIAAAAAAAAAOUUUUUUUUUUUUUUUUUUIUUUUUUUUIUUUUUUUUUUUUUUIAAAOUUUUUUUUUUUUUIUUUUIAOUUUUUUUUUUUUUUUUUUUUUUUUUUUUUIAAAAAAAAAAAAOUUUUUUUUUUUUUUUUUUUUIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
}
The response is:
{
"tokens": [
{
"token": "uiaouuuuuuuiaaaaaaaaaaaaaaaaaouuuuiaaaaouuuiaouuuuuuuuuuuuuuuuuuuuuuuuuuiaaaaaaaaaaaaaaaaaaaaaaouuuuuuuuuuiaaaaaouuuuuuuuuuuuuiaaaaouuuuuuuuuuuuuiaaaaaaaaouuuuuuiaaaaaaaaaouuuuuuuuuuuuuuuuuuiuuuuuuuuiuuuuuuuuuuuuuuiaaaouuuuuuuuuuuuuiuuuuiaouuuuuuuuuuuuuuu",
"start_offset": 0,
"end_offset": 255,
"type": "<ALPHANUM>",
"position": 0
},
{
"token": "uuuuuuuuuuuuuuiaaaaaaaaaaaaouuuuuuuuuuuuuuuuuuuuiaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"start_offset": 255,
"end_offset": 510,
"type": "<ALPHANUM>",
"position": 1
},
{
"token": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaouuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuiaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"start_offset": 510,
"end_offset": 732,
"type": "<ALPHANUM>",
"position": 2
}
]
}
As you can see, Elasticsearch has split your input into three tokens and lowercased them. This looks unexpected, but if you think that it actually tries to facilitate search for words in human language, it makes sense - there are no such long words.
That's why now regexp
query ".{7}a{7}.*"
will match: there is a token that actually starts with a lot of a
's, which is an expected behavior of regexp
query.
...Elasticsearch will apply the regexp to the terms produced by the tokenizer for that field, and not to the original text of the field.
regexp
query consider the entire string?It is very simple: do not apply analyzers. The type keyword
stores the string you provide as is.
With a mapping like this:
PUT my_regexes
{
"mappings": {
"doc": {
"properties": {
"Unit": {
"properties": {
"DailyAvailablity": {
"type": "keyword"
}
}
}
}
}
}
}
You will be able to do a query like this that will match the document from the post:
POST my_regexes/doc/_search
{
"query": {
"bool": {
"filter": [
{
"regexp": { "Unit.DailyAvailablity": "UIAOUUUUUUUIA.*" }
}
]
}
}
}
Note that the query became case-sensitive because the field is not analyzed.
This regexp
won't return any results anymore: ".{12}a{7}.*"
This will: ".{12}A{7}.*"
The regexes are anchored:
Lucene’s patterns are always anchored. The pattern provided must match the entire string.
The reason why it looked like the anchoring was wrong was most likely because tokens got split in an analyzed text
field.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With