The primary difference is the order in which the fold operation iterates through the collection in question. foldLeft starts on the left side—the first item—and iterates to the right; foldRight starts on the right side—the last item—and iterates to the left.
Fold and reduce The difference between the two functions is that fold() takes an initial value and uses it as the accumulated value on the first step, whereas the first step of reduce() uses the first and the second elements as operation arguments on the first step.
fold calls fold on an iterator for each partition, then merges the results, reduce calls reduceLeft on the iterator for each partition then merges the result. The difference is that fold doesn't need to worry about empty partitions or collections, because then it will just use the zero value.
The foldLeft method takes an associative binary operator function as parameter and will use it to collapse elements from the collection. The order for traversing the elements in the collection is from left to right and hence the name foldLeft. The foldLeft method allows you to also specify an initial value.
In general, all 6 fold functions apply a binary operator to each element of a collection. The result of each step is passed on to the next step (as input to one of the binary operator's two arguments). This way we can cumulate a result.
reduceLeft
and reduceRight
cumulate a single result.
foldLeft
and foldRight
cumulate a single result using a start value.
scanLeft
and scanRight
cumulate a collection of intermediate cumulative results using a start value.
From LEFT and forwards...
With a collection of elements abc
and a binary operator add
we can explore what the different fold functions do when going forwards from the LEFT element of the collection (from A to C):
val abc = List("A", "B", "C")
def add(res: String, x: String) = {
println(s"op: $res + $x = ${res + x}")
res + x
}
abc.reduceLeft(add)
// op: A + B = AB
// op: AB + C = ABC // accumulates value AB in *first* operator arg `res`
// res: String = ABC
abc.foldLeft("z")(add) // with start value "z"
// op: z + A = zA // initial extra operation
// op: zA + B = zAB
// op: zAB + C = zABC
// res: String = zABC
abc.scanLeft("z")(add)
// op: z + A = zA // same operations as foldLeft above...
// op: zA + B = zAB
// op: zAB + C = zABC
// res: List[String] = List(z, zA, zAB, zABC) // maps intermediate results
From RIGHT and backwards...
If we start with the RIGHT element and go backwards (from C to A) we'll notice that now the second argument to our binary operator accumulates the result (the operator is the same, we just switched the argument names to make their roles clear):
def add(x: String, res: String) = {
println(s"op: $x + $res = ${x + res}")
x + res
}
abc.reduceRight(add)
// op: B + C = BC
// op: A + BC = ABC // accumulates value BC in *second* operator arg `res`
// res: String = ABC
abc.foldRight("z")(add)
// op: C + z = Cz
// op: B + Cz = BCz
// op: A + BCz = ABCz
// res: String = ABCz
abc.scanRight("z")(add)
// op: C + z = Cz
// op: B + Cz = BCz
// op: A + BCz = ABCz
// res: List[String] = List(ABCz, BCz, Cz, z)
.
From LEFT and forwards...
If instead we were to de-cumulate some result by subtraction starting from the LEFT element of a collection, we would cumulate the result through the first argument res
of our binary operator minus
:
val xs = List(1, 2, 3, 4)
def minus(res: Int, x: Int) = {
println(s"op: $res - $x = ${res - x}")
res - x
}
xs.reduceLeft(minus)
// op: 1 - 2 = -1
// op: -1 - 3 = -4 // de-cumulates value -1 in *first* operator arg `res`
// op: -4 - 4 = -8
// res: Int = -8
xs.foldLeft(0)(minus)
// op: 0 - 1 = -1
// op: -1 - 2 = -3
// op: -3 - 3 = -6
// op: -6 - 4 = -10
// res: Int = -10
xs.scanLeft(0)(minus)
// op: 0 - 1 = -1
// op: -1 - 2 = -3
// op: -3 - 3 = -6
// op: -6 - 4 = -10
// res: List[Int] = List(0, -1, -3, -6, -10)
From RIGHT and backwards...
But look out for the xRight variations now! Remember that the (de-)cumulated value in the xRight variations is passed to the second parameter res
of our binary operator minus
:
def minus(x: Int, res: Int) = {
println(s"op: $x - $res = ${x - res}")
x - res
}
xs.reduceRight(minus)
// op: 3 - 4 = -1
// op: 2 - -1 = 3 // de-cumulates value -1 in *second* operator arg `res`
// op: 1 - 3 = -2
// res: Int = -2
xs.foldRight(0)(minus)
// op: 4 - 0 = 4
// op: 3 - 4 = -1
// op: 2 - -1 = 3
// op: 1 - 3 = -2
// res: Int = -2
xs.scanRight(0)(minus)
// op: 4 - 0 = 4
// op: 3 - 4 = -1
// op: 2 - -1 = 3
// op: 1 - 3 = -2
// res: List[Int] = List(-2, 3, -1, 4, 0)
The last List(-2, 3, -1, 4, 0) is maybe not what you would intuitively expect!
As you see, you can check what your foldX is doing by simply running a scanX instead and debug the cumulated result at each step.
reduceLeft
or reduceRight
.foldLeft
or foldRight
if you have a start value.Cumulate a collection of intermediate results with scanLeft
or scanRight
.
Use a xLeft variation if you want to go forwards through the collection.
Normally REDUCE,FOLD,SCAN method works by accumulating data on LEFT and keep on changing the RIGHT variable. Main difference between them is REDUCE,FOLD is:-
Fold will always start with a seed
value i.e. user defined starting value.
Reduce will throw a exception if collection is empty where as fold gives back the seed value. Will always result a single value.
Scan is used for some processing order of items from left or right hand side, then we can make use of previous result in subsequent calculation. That means we can scan items. Will always result a collection.
RIGHT_REDUCE is opposite to reduceLeft one i.e. it accumulates values in RIGHT and keep on changing the left variable.
reduceLeftOption and reduceRightOption are similar to left_reduce and right_reduce only difference is they return results in OPTION object.
A part of output for below mentioned code would be :-
using scan
operation over a list of numbers (using seed
value 0
) List(-2,-1,0,1,2)
{0,-2}=>-2 {-2,-1}=>-3 {-3,0}=>-3 {-3,1}=>-2 {-2,2}=>0 scan List(0, -2, -3, -3, -2, 0)
{0,-2}=>-2 {-2,-1}=>-3 {-3,0}=>-3 {-3,1}=>-2 {-2,2}=>0 scanLeft (a+b) List(0, -2, -3, -3, -2, 0)
{0,-2}=>-2 {-2,-1}=>-3 {-3,0}=>-3 {-3,1}=>-2 {-2,2}=>0 scanLeft (b+a) List(0, -2, -3, -3, -2, 0)
{2,0}=>2 {1,2}=>3 {0,3}=>3 {-1,3}=>2 {-2,2}=>0 scanRight (a+b) List(0, 2, 3, 3, 2, 0)
{2,0}=>2 {1,2}=>3 {0,3}=>3 {-1,3}=>2 {-2,2}=>0 scanRight (b+a) List(0, 2, 3, 3, 2, 0)
using reduce
,fold
operations over a list of Strings List("A","B","C","D","E")
Code :
object ScanFoldReduce extends App {
val list = List("A","B","C","D","E")
println("reduce (a+b) "+list.reduce((a,b)=>{
print("{"+a+","+b+"}=>"+ (a+b)+" ")
a+b
}))
println("reduceLeft (a+b) "+list.reduceLeft((a,b)=>{
print("{"+a+","+b+"}=>"+ (a+b)+" ")
a+b
}))
println("reduceLeft (b+a) "+list.reduceLeft((a,b)=>{
print("{"+a+","+b+"}=>"+ (b+a)+" " )
b+a
}))
println("reduceRight (a+b) "+list.reduceRight((a,b)=>{
print("{"+a+","+b+"}=>"+ (a+b)+" " )
a+b
}))
println("reduceRight (b+a) "+list.reduceRight((a,b)=>{
print("{"+a+","+b+"}=>"+ (b+a)+" ")
b+a
}))
println("scan "+list.scan("[")((a,b)=>{
print("{"+a+","+b+"}=>"+ (a+b)+" " )
a+b
}))
println("scanLeft (a+b) "+list.scanLeft("[")((a,b)=>{
print("{"+a+","+b+"}=>"+ (a+b)+" " )
a+b
}))
println("scanLeft (b+a) "+list.scanLeft("[")((a,b)=>{
print("{"+a+","+b+"}=>"+ (b+a)+" " )
b+a
}))
println("scanRight (a+b) "+list.scanRight("[")((a,b)=>{
print("{"+a+","+b+"}=>"+ (a+b)+" " )
a+b
}))
println("scanRight (b+a) "+list.scanRight("[")((a,b)=>{
print("{"+a+","+b+"}=>"+ (b+a)+" " )
b+a
}))
//Using numbers
val list1 = List(-2,-1,0,1,2)
println("reduce (a+b) "+list1.reduce((a,b)=>{
print("{"+a+","+b+"}=>"+ (a+b)+" ")
a+b
}))
println("reduceLeft (a+b) "+list1.reduceLeft((a,b)=>{
print("{"+a+","+b+"}=>"+ (a+b)+" ")
a+b
}))
println("reduceLeft (b+a) "+list1.reduceLeft((a,b)=>{
print("{"+a+","+b+"}=>"+ (b+a)+" " )
b+a
}))
println(" reduceRight (a+b) "+list1.reduceRight((a,b)=>{
print("{"+a+","+b+"}=>"+ (a+b)+" " )
a+b
}))
println(" reduceRight (b+a) "+list1.reduceRight((a,b)=>{
print("{"+a+","+b+"}=>"+ (b+a)+" ")
b+a
}))
println("scan "+list1.scan(0)((a,b)=>{
print("{"+a+","+b+"}=>"+ (a+b)+" " )
a+b
}))
println("scanLeft (a+b) "+list1.scanLeft(0)((a,b)=>{
print("{"+a+","+b+"}=>"+ (a+b)+" " )
a+b
}))
println("scanLeft (b+a) "+list1.scanLeft(0)((a,b)=>{
print("{"+a+","+b+"}=>"+ (b+a)+" " )
b+a
}))
println("scanRight (a+b) "+list1.scanRight(0)((a,b)=>{
print("{"+a+","+b+"}=>"+ (a+b)+" " )
a+b}))
println("scanRight (b+a) "+list1.scanRight(0)((a,b)=>{
print("{"+a+","+b+"}=>"+ (a+b)+" " )
b+a}))
}
For the collection x with elements x0, x1, x2, x3 and an arbitrary function f you have the following:
1. x.reduceLeft (f) is f(f(f(x0,x1),x2),x3) - notice 3 function calls
2. x.reduceRight (f) is f(f(f(x3,x2),x1),x0) - notice 3 function calls
3. x.foldLeft (init,f) is f(f(f(f(init,x0),x1),x2),x3) - notice 4 function calls
4. x.foldRight(init,f) is f(f(f(f(init,x3),x2),x1),x0) - notice 4 function calls
5. x.scanLeft (init,f) is f(init,x0)=g0
f(f(init,x0),x1) = f(g0,x1) = g1
f(f(f(init,x0),x1),x2) = f(g1,x2) = g2
f(f(f(f(init,x0),x1),x2),x3) = f(g2,x3) = g3
- notice 4 function calls but also 4 emitted values
- last element is identical with foldLeft
6. x.scanRight (init,f) is f(init,x3)=h0
f(f(init,x3),x2) = f(h0,x2) = h1
f(f(f(init,x3),x2),x1) = f(h1,x1) = h2
f(f(f(f(init,x3),x2),x1),x0) = f(h2,x0) = h3
- notice 4 function calls but also 4 emitted values
- last element is identical with foldRight
scan
is like fold
but also emits all intermediate valuesreduce
doesn't need an initial value which sometimes is a little harder to findfold
needs an initial value that is a little harder to find:
x.reduceLeft(f) === x.drop(1).foldLeft(x.head,f)
x.foldRight(init,f) === x.reverse.foldLeft(init,f)
x.foldLeft(init,f) === x.scanLeft(init,f).last
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With