I am writing an application that use a third-party library to perform heavy computations.
This library implements parallelism internally and spawn given number threads. I want to run several (dynamic count) instances of this library and therefore end up with quite heavily oversubscribing the cpu.
Is there any way I can increase the "time quantum" of all the threads in a process so that e.g. all the threads with normal priority rarely context switch (yield) unless they are explicitly yielded through e.g. semaphores?
That way I could possibly avoid most of the performance overhead of oversubscribing the cpu. Note that in this case I don't care if a thread is starved for a few seconds.
EDIT:
One complicated way of doing this is to perform thread scheduling manually.
Any major drawbacks with this approach? Not sure what the overhead of resume/suspending a thread is?
Thread switching is a type of context switching from one thread to another thread in the same process. Thread switching is very efficient and much cheaper because it involves switching out only identities and resources such as the program counter, registers and stack pointers.
A rate of more than 75 000 to 100 000 context switches per second is considered to be high.
There is nothing special you need to do. Any decent scheduler will not allow unforced context switches to consume a significant fraction of CPU resources. Any operating system that doesn't have a decent scheduler should not be used.
The performance overhead of oversubscribing the CPU is not the cost of unforced context switches. Why? Because the scheduler can simply avoid those. The scheduler only performs an unforced context switch when that has a benefit. The performance costs are:
It can take longer to finish a job because more work will be done on other jobs between when the job is started and when the job finishes.
Additional threads consume memory for their stacks and related other tracking information.
More threads generally means more contention (for example, when memory is allocated) which can mean more forced context switches where a thread has to be switched out because it can't make forward progress.
You only want to try to change the scheduler's behavior when you know something significant that the scheduler doesn't know. There is nothing like that going on here. So the default behavior is what you want.
Any major drawbacks with this approach? Not sure what the overhead of resume/suspending a thread is?
Yes,resume/suspend the thread is very very dangerous activity done in user mode of program. So it should not be used(almost never). Moreover we should not use these concepts to achieve something which any modern scheduler does for us. This too is mentioned in other post of this question.
The above is applicable for any operating system, but from SO post tag it appears to me that it has been asked for Microsoft Windows based system. Now if we read about the SuspendThread() from MSDN, we get the following:
"This function is primarily designed for use by debuggers. It is not intended to be used for thread synchronization. Calling SuspendThread on a thread that owns a synchronization object, such as a mutex or critical section, can lead to a deadlock if the calling thread tries to obtain a synchronization object owned by a suspended thread".
So consider the scenario in which thread has acquired some resource(implicitly .i.e. part of not code..by library or kernel mode), and if we suspend the thread this would result into mysterious deadlock situation as other threads of that process would be waiting for that particular resource. The fact is we are not sure(at any time) in our program that what sort of resources are acquired by any running thread, suspend/resume thread is not good idea.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With