As mentioned here and here, this doesn't work anymore in numpy 1.7+ :
import numpy
A = numpy.array([1, 2, 3, 4], dtype=numpy.int16)
B = numpy.array([0.5, 2.1, 3, 4], dtype=numpy.float64)
A *= B
A workaround is to do:
def mult(a,b):
numpy.multiply(a, b, out=a, casting="unsafe")
def add(a,b):
numpy.add(a, b, out=a, casting="unsafe")
mult(A,B)
but that's way too long to write for each matrix operation!
How can override the numpy *=
operator to do this by default?
Should I subclass something?
You can use np.set_numeric_ops
to override array arithmetic methods:
import numpy as np
def unsafe_multiply(a, b, out=None):
return np.multiply(a, b, out=out, casting="unsafe")
np.set_numeric_ops(multiply=unsafe_multiply)
A = np.array([1, 2, 3, 4], dtype=np.int16)
B = np.array([0.5, 2.1, 3, 4], dtype=np.float64)
A *= B
print(repr(A))
# array([ 0, 4, 9, 16], dtype=int16)
You can create a general function and pass the intended attribute to it:
def calX(a,b, attr):
try:
return getattr(numpy, attr)(a, b, out=a, casting="unsafe")
except AttributeError:
raise Exception("Please enter a valid attribute")
Demo:
>>> import numpy
>>> A = numpy.array([1, 2, 3, 4], dtype=numpy.int16)
>>> B = numpy.array([0.5, 2.1, 3, 4], dtype=numpy.float64)
>>> calX(A, B, 'multiply')
array([ 0, 4, 9, 16], dtype=int16)
>>> calX(A, B, 'subtract')
array([ 0, 1, 6, 12], dtype=int16)
Note that if you want to override the result you can just assign the function's return to the first matrix.
A = calX(A, B, 'multiply')
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With