I need to operate on a sequence of functions
h_k(x) = (I + f_k( ) )^k g(x)
for each k=1,...,N.
A basic example (N=2, f_k=f) is the following:
f(x) = x^2
g(x) = x
h1(x) = g(x) + f(g(x))
h2(x) = g(x) + f(g(x)) + f(g(x) + f(g(x)))
println(h1(1)) # returns 2
println(h2(1)) # returns 6
I need to write this in a loop and it would be best to redefine g(x) at each iteration. Unfortunately, I do not know how to do this in Julia without conflicting with the syntax for a recursive definition of g(x). Indeed,
f(x) = x^2
g(x) = x
for i=1:2
global g(x) = g(x) + f(g(x))
println(g(1))
end
results in a StackOverflowError.
In Julia, what is the proper way to redefine g(x), using its previous definition?
P.S. For those who would suggest that this problem could be solved with recursion: I want to use a for loop because of how the functions f_k(x) (in the above, each f_k = f) are computed in the real problem that this derives from.
I am not sure if it is best, but a natural approach is to use anonymous functions here like this:
let
f(x) = x^2
g = x -> x
for i=1:2
l = g
g = x -> l(x) + f(l(x))
println(g(1))
end
end
or like this
f(x) = x^2
g = x -> x
for i=1:4
l = g
global g = x -> l(x) + f(l(x))
println(g(1))
end
(I prefer the former option using let as it avoids using global variables)
The issue is that l is a loop local variable that gets a fresh binding at each iteration, while g is external to the loop.
You might also check out this section of the Julia manual.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With