I have a binary file that was created using a Python code. This code mainly scripts a bunch of tasks to pre-process a set of data files. I would now like to read this binary file in Fortran. The content of the binary file is coordinates of points in a simple format e.g.: number of points, x0, y0, z0, x1, y1, z1, ....
These binary files were created using the 'tofile' function in numpy. I have the following code in Fortran so far:
integer:: intValue
double precision:: dblValue
integer:: counter
integer:: check
open(unit=10, file='file.bin', form='unformatted', status='old', access='stream')
counter = 1
do
if ( counter == 1 ) then
read(unit=10, iostat=check) intValue
if ( check < 0 ) then
print*,"End Of File"
stop
else if ( check > 0 ) then
print*, "Error Detected"
stop
else if ( check == 0 ) then
counter = counter + 1
print*, intValue
end if
else if ( counter > 1 ) then
read(unit=10, iostat=check) dblValue
if ( check < 0 ) then
print*,"End Of File"
stop
else if ( check > 0 ) then
print*, "Error Detected"
stop
else if ( check == 0 ) then
counter = counter + 1
print*,dblValue
end if
end if
end do
close(unit=10)
This unfortunately does not work, and I get garbage numbers (e.g 6.4731191026611484E+212, 2.2844499004808491E-279 etc.). Could someone give some pointers on how to do this correctly? Also what would be a good way of writing and reading binary files interchangeably between Python and Fortran - as it seems like that is going to be one of the requirements of my application.
Thanks
Here's a trivial example of how to take data generated with numpy to Fortran the binary way.
I calculated 360 values of sin
on [0,2π)
,
#!/usr/bin/env python3
import numpy as np
with open('sin.dat', 'wb') as outfile:
np.sin(np.arange(0., 2*np.pi, np.pi/180.,
dtype=np.float32)).tofile(outfile)
exported that with tofile to binary file 'sin.dat'
, which has a size of 1440 bytes (360 * sizeof(float32))
, read that file with this Fortran95 (gfortran -O3 -Wall -pedantic) program which outputs 1. - (val**2 + cos(x)**2)
for x in [0,2π),
program numpy_import
integer, parameter :: REAL_KIND = 4
integer, parameter :: UNIT = 10
integer, parameter :: SAMPLE_LENGTH = 360
real(REAL_KIND), parameter :: PI = acos(-1.)
real(REAL_KIND), parameter :: DPHI = PI/180.
real(REAL_KIND), dimension(0:SAMPLE_LENGTH-1) :: arr
real(REAL_KIND) :: r
integer :: i
open(UNIT, file="sin.dat", form='unformatted',&
access='direct', recl=4)
do i = 0,ubound(arr, 1)
read(UNIT, rec=i+1, err=100) arr(i)
end do
do i = 0,ubound(arr, 1)
r = 1. - (arr(i)**2. + cos(real(i*DPHI, REAL_KIND))**2)
write(*, '(F6.4, " ")', advance='no')&
real(int(r*1E6+1)/1E6, REAL_KIND)
end do
100 close(UNIT)
write(*,*)
end program numpy_import
thus if val == sin(x)
, the numeric result must in good approximation vanish for float32 types.
And indeed:
output:
360 x 0.0000
So thanks to this great community, from all the advise I got, and a little bit of tinkering around, I think I figured out a stable solution to this problem, and I wanted to share with you all this answer. I will provide a minimal example here, where I want to write a variable size array from Python into a binary file, and read it using Fortran. I am assuming that the number of rows numRows
and number of columns numCols
are also written along with the full array datatArray
. The following Python script writeBin.py
writes the file:
import numpy as np
# Read in the numRows and numCols value
# Read in the array values
numRowArr = np.array([numRows], dtype=np.float32)
numColArr = np.array([numCols], dtype=np.float32)
fileObj = open('pybin.bin', 'wb')
numRowArr.tofile(fileObj)
numColArr.tofile(fileObj)
for i in range(numRows):
lineArr = dataArray[i,:]
lineArr.tofile(fileObj)
fileObj.close()
Following this, the fortran code to read the array from the file can be programmed as follows:
program readBin
use iso_fortran_env
implicit none
integer:: nR, nC, i
real(kind=real32):: numRowVal, numColVal
real(kind=real32), dimension(:), allocatable:: rowData
real(kind=real32), dimension(:,:), allocatable:: fullData
open(unit=10,file='pybin.bin',form='unformatted',status='old',access='stream')
read(unit=10) numRowVal
nR = int(numRowVal)
read(unit=10) numColVal
nC = int(numColVal)
allocate(rowData(nC))
allocate(fullData(nR,nC))
do i = 1, nR
read(unit=10) rowData
fullData(i,:) = rowData(:)
end do
close(unit=10)
end program readBin
The main point that I gathered from the discussion on this thread is to match the read and the write as much as possible, with precise specifications of the data types to be read, the way they are written etc. As you may note, this is a made up example, so there may be some things here and there that are not perfect. However, I have used this now to program a finite element program, and the mesh data was where I used this binary read/write - and it worked very well.
P.S: In case you find some typo, please let me know, and I will edit it out rightaway.
Thanks a lot.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With