My objective is to read the avro file data from Cloud storage and write it to BigQuery table using Java. It would be good if some one provide the code snipet/ideas to read avro format data and write it to BigQuery table using Cloud Dataflow.
I see two possible approaches:
PipelineOptions options = PipelineOptionsFactory.fromArgs(args).withValidation().create();
Pipeline p = Pipeline.create(options);
// Read an AVRO file.
// Alternatively, read the schema from a file.
// https://beam.apache.org/releases/javadoc/2.11.0/index.html?org/apache/beam/sdk/io/AvroIO.html
Schema avroSchema = new Schema.Parser().parse(
"{\"type\": \"record\", "
+ "\"name\": \"quote\", "
+ "\"fields\": ["
+ "{\"name\": \"source\", \"type\": \"string\"},"
+ "{\"name\": \"quote\", \"type\": \"string\"}"
+ "]}");
PCollection<GenericRecord> avroRecords = p.apply(
AvroIO.readGenericRecords(avroSchema).from("gs://bucket/quotes.avro"));
// Convert Avro GenericRecords to BigQuery TableRows.
// It's probably better to use Avro-generated classes instead of manually casting types.
// https://beam.apache.org/documentation/io/built-in/google-bigquery/#writing-to-bigquery
PCollection<TableRow> bigQueryRows = avroRecords.apply(
MapElements.into(TypeDescriptor.of(TableRow.class))
.via(
(GenericRecord elem) ->
new TableRow()
.set("source", ((Utf8) elem.get("source")).toString())
.set("quote", ((Utf8) elem.get("quote")).toString())));
// https://cloud.google.com/bigquery/docs/schemas
TableSchema bigQuerySchema =
new TableSchema()
.setFields(
ImmutableList.of(
new TableFieldSchema()
.setName("source")
.setType("STRING"),
new TableFieldSchema()
.setName("quote")
.setType("STRING")));
bigQueryRows.apply(BigQueryIO.writeTableRows()
.to(new TableReference()
.setProjectId("project_id")
.setDatasetId("dataset_id")
.setTableId("avro_source"))
.withSchema(bigQuerySchema)
.withCreateDisposition(CreateDisposition.CREATE_IF_NEEDED)
.withWriteDisposition(WriteDisposition.WRITE_TRUNCATE));
p.run().waitUntilFinish();
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With