I have a csv file with 3 columns emotion, pixels, Usage consisting of 35000 rows e.g. 0,70 23 45 178 455,Training. 
I used pandas.read_csv to read the csv file as pd.read_csv(filename, dtype={'emotion':np.int32, 'pixels':np.int32, 'Usage':str}). 
When I try the above, it says ValueError: invalid literal for long() with base 10: '70 23 45 178 455'? How do i read the pixels columns as a numpy array?
Please try the below code instead -
df = pd.read_csv(filename, dtype={'emotion':np.int32, 'pixels':str, 'Usage':str})
def makeArray(text):
    return np.fromstring(text,sep=' ')
df['pixels'] = df['pixels'].apply(makeArray)
                        It will be faster I believe to use the vectorised str method to split the string and create the new pixel columns as desired and concat the new columns to the new df:
In [175]:
# load the data
import pandas as pd
import io
t="""emotion,pixels,Usage
0,70 23 45 178 455,Training"""
df = pd.read_csv(io.StringIO(t))
df
Out[175]:
   emotion            pixels     Usage
0        0  70 23 45 178 455  Training
In [177]:
# now split the string and concat column-wise with the orig df
df = pd.concat([df, df['pixels'].str.split(expand=True).astype(int)], axis=1)
df
Out[177]:
   emotion            pixels     Usage   0   1   2    3    4
0        0  70 23 45 178 455  Training  70  23  45  178  455
If you specifically want a flat np array you can just call the .values attribute:
In [181]:
df['pixels'].str.split(expand=True).astype(int).values
Out[181]:
array([[ 70,  23,  45, 178, 455]])
                        If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With