If I had the table:
a b c
15 15 5
20 10 7
25 30 9
And wanted to do two things 1) Pick out the column with the highest value across the axis and assign it to a column 2) Take the value and assign it to another column, such as:
a b c 1st 1st_value 2nd 2nd_value 3rd 3rd_value
15 15 5 a/b 15 c 5 NaN NaN
20 10 7 a 20 b 10 c 7
25 30 9 b 30 a 25 c 9
Is this possible?
I can suggest you to solve it like this:
import pandas as pd
import numpy as np
df = pd.DataFrame([{'a': 15, 'b': 15, 'c': 5}, {'a': 20, 'b': 10, 'c': 7}, {'a': 25, 'b': 30, 'c': 9}])
ext = {0: 'st', 1: 'nd', 2: 'rd'}
cols = df.columns
def make_ranking(row, rank=0, is_value=False):
values = list(row[cols])
sorted_values = sorted(set(values), reverse=True)
value = sorted_values[rank] if len(sorted_values) > rank else np.nan
if not is_value:
items = [k for k, v in enumerate(values) if v == value]
value = '/'.join([cols[item] for item in items]) or np.nan
return value
for i in range(len(cols)):
df[str(i+1)+ext[i]] = df.apply(make_ranking, args=(i, False, ), axis=1)
df[str(i+1)+ext[i]+'_value'] = df.apply(make_ranking, args=(i, True, ), axis=1)
print(df)
Output:
a b c 1st 1st_value 2nd 2nd_value 3rd 3rd_value
0 15 15 5 a/b 15 c 5 NaN NaN
1 20 10 7 a 20 b 10 c 7
2 25 30 9 b 30 a 25 c 9
df_sorted = df.apply(lambda row: sorted(set(row), reverse=True) + [None]*(len(row)-len(set(row))), axis=1)
>>> df_sorted
a b c
0 15 5 NaN
1 20 10 7
2 30 25 9
Rename columns if you want:
df_sorted.rename(columns={'a': '1st_value', 'b': '2nd_value', 'c': '3rd_value'}, inplace=True)
>>> df_sorted
1st_value 2nd_value 3rd_value
0 15 5 NaN
1 20 10 7
2 30 25 9
Concat original and sorted if you want:
df_concat = pd.concat([df, df_sorted], axis=1)
>>> df_concat
a b c 1st_value 2nd_value 3rd_value
0 15 15 5 15 5 NaN
1 20 10 7 20 10 7
2 25 30 9 30 25 9
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With