I need the c or c++ source code of a function like betarand(a,b)
that produces random number with beta distribution . I know that I can use boost library but I'm going to port it for CUDA architecture so I need the code. Can somebody help me?
Meantime I have betapdf
(Beta Probability density function). But I don't know how to use it for creating random numbers :).
The C++11 random number library doesn't provide a beta distribution. However, a beta distribution can be modelled in terms of two gamma distributions, which the library does provide. I've implemented a beta_distribution
in terms of std::gamma_distribution
for you. As far as I can tell, it fully conforms with the requirements for a Random Number Distribution.
#include <iostream>
#include <sstream>
#include <string>
#include <random>
namespace sftrabbit {
template <typename RealType = double>
class beta_distribution
{
public:
typedef RealType result_type;
class param_type
{
public:
typedef beta_distribution distribution_type;
explicit param_type(RealType a = 2.0, RealType b = 2.0)
: a_param(a), b_param(b) { }
RealType a() const { return a_param; }
RealType b() const { return b_param; }
bool operator==(const param_type& other) const
{
return (a_param == other.a_param &&
b_param == other.b_param);
}
bool operator!=(const param_type& other) const
{
return !(*this == other);
}
private:
RealType a_param, b_param;
};
explicit beta_distribution(RealType a = 2.0, RealType b = 2.0)
: a_gamma(a), b_gamma(b) { }
explicit beta_distribution(const param_type& param)
: a_gamma(param.a()), b_gamma(param.b()) { }
void reset() { }
param_type param() const
{
return param_type(a(), b());
}
void param(const param_type& param)
{
a_gamma = gamma_dist_type(param.a());
b_gamma = gamma_dist_type(param.b());
}
template <typename URNG>
result_type operator()(URNG& engine)
{
return generate(engine, a_gamma, b_gamma);
}
template <typename URNG>
result_type operator()(URNG& engine, const param_type& param)
{
gamma_dist_type a_param_gamma(param.a()),
b_param_gamma(param.b());
return generate(engine, a_param_gamma, b_param_gamma);
}
result_type min() const { return 0.0; }
result_type max() const { return 1.0; }
result_type a() const { return a_gamma.alpha(); }
result_type b() const { return b_gamma.alpha(); }
bool operator==(const beta_distribution<result_type>& other) const
{
return (param() == other.param() &&
a_gamma == other.a_gamma &&
b_gamma == other.b_gamma);
}
bool operator!=(const beta_distribution<result_type>& other) const
{
return !(*this == other);
}
private:
typedef std::gamma_distribution<result_type> gamma_dist_type;
gamma_dist_type a_gamma, b_gamma;
template <typename URNG>
result_type generate(URNG& engine,
gamma_dist_type& x_gamma,
gamma_dist_type& y_gamma)
{
result_type x = x_gamma(engine);
return x / (x + y_gamma(engine));
}
};
template <typename CharT, typename RealType>
std::basic_ostream<CharT>& operator<<(std::basic_ostream<CharT>& os,
const beta_distribution<RealType>& beta)
{
os << "~Beta(" << beta.a() << "," << beta.b() << ")";
return os;
}
template <typename CharT, typename RealType>
std::basic_istream<CharT>& operator>>(std::basic_istream<CharT>& is,
beta_distribution<RealType>& beta)
{
std::string str;
RealType a, b;
if (std::getline(is, str, '(') && str == "~Beta" &&
is >> a && is.get() == ',' && is >> b && is.get() == ')') {
beta = beta_distribution<RealType>(a, b);
} else {
is.setstate(std::ios::failbit);
}
return is;
}
}
Use it like so:
std::random_device rd;
std::mt19937 gen(rd());
sftrabbit::beta_distribution<> beta(2, 2);
for (int i = 0; i < 10000; i++) {
std::cout << beta(gen) << std::endl;
}
Maybe you can use the code that gsl
uses for producing random numbers with the beta distribution. They use a little weird way of produging them, as you have to pass a random number generator to the function, but surely you can get what you need.
Here's the documentation and the web page
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With