ginv()
function from MASS
package in R produce totally different values compared to MATLAB pinv()
function. They both claim to produce Moore-Penrose generalized inverse of a matrix.
I tried to set the same tolerance for the R implementation but the difference persists.
max(size(A)) * norm(A) * eps(class(A))
sqrt(.Machine$double.eps)
Reproduction:
R:
library(MASS)
A <- matrix(c(47,94032,149, 94032, 217179406,313679,149,313679,499),3,3)
ginv(A)
outputs:
[,1] [,2] [,3]
[1,] 1.675667e-03 -8.735203e-06 5.545605e-03
[2,] -8.735203e-06 5.014084e-08 -2.890907e-05
[3,] 5.545605e-03 -2.890907e-05 1.835313e-02
svd(A)
outputs:
$d
[1] 2.171799e+08 4.992800e+01 2.302544e+00
$u
[,1] [,2] [,3]
[1,] -0.0004329688 0.289245088 -9.572550e-01
[2,] -0.9999988632 -0.001507826 -3.304234e-06
[3,] -0.0014443299 0.957253888 2.892454e-01
$v
[,1] [,2] [,3]
[1,] -0.0004329688 0.289245088 -9.572550e-01
[2,] -0.9999988632 -0.001507826 -3.304234e-06
[3,] -0.0014443299 0.957253888 2.892454e-01
MATLAB:
A = [47 94032 149; 94032 217179406 313679; 149 313679 499]
pinv(A)
outputs:
ans =
0.3996 -0.0000 -0.1147
-0.0000 0.0000 -0.0000
-0.1147 -0.0000 0.0547
svd:
[U, S, V] = svd(A)
U =
-0.0004 0.2892 -0.9573
-1.0000 -0.0015 -0.0000
-0.0014 0.9573 0.2892
S =
1.0e+008 *
2.1718 0 0
0 0.0000 0
0 0 0.0000
V =
-0.0004 0.2892 -0.9573
-1.0000 -0.0015 -0.0000
-0.0014 0.9573 0.2892
Solution:
to make R ginv
like MATLAB pinv
use this function:
#' Pseudo-Inverse of Matrix
#' @description
#' This is the modified version of ginv function in MASS package.
#' It produces MATLAB like pseudo-inverse of a matrix
#' @param X The matrix to compute the pseudo-inverse
#' @param tol The default is the same as MATLAB pinv function
#'
#' @return The pseudo inverse of the matrix
#' @export
#'
#' @examples
#' A <- matrix(1:6,3,2)
#' pinv(A)
pinv <- function (X, tol = max(dim(X)) * max(X) * .Machine$double.eps)
{
if (length(dim(X)) > 2L || !(is.numeric(X) || is.complex(X)))
stop("'X' must be a numeric or complex matrix")
if (!is.matrix(X))
X <- as.matrix(X)
Xsvd <- svd(X)
if (is.complex(X))
Xsvd$u <- Conj(Xsvd$u)
Positive <- any(Xsvd$d > max(tol * Xsvd$d[1L], 0))
if (Positive)
Xsvd$v %*% (1 / Xsvd$d * t(Xsvd$u))
else
array(0, dim(X)[2L:1L])
}
Solution: to make R ginv like MATLAB pinv use this function: #' Pseudo-Inverse of Matrix #' @description #' This is the modified version of ginv function in MASS package.
The pinv () function in OCTAVE/MATLAB returns the Moore-Penrose pseudo inverse of a matrix using Singular value. The inv () function returns the inverse of the matrix. The pinv () function is useful when your matrix is non-invertible (singular matrix) or Determinant of that Matrix =0.
The pinv () function involves the use of floating-point arithmetic. It is used to handle Non-Singular Matrices, it refers to inverse of a matrix. The inv () function doesn’t involve use of floating-point arithmetic.
But using the same Matrix, the inverse can be calculated using the pinv () function. Both pinv () and inv () are used to find the inverse of matrices in MATLAB. However, the difference is that pinv refers to pseudo inverse and inv refers to inverse. Below are some key differences between both the functions:
Running debugonce(MASS::ginv)
, we see that the difference lies in what is done with the singular value decomposition.
Specifically, R checks the following:
Xsvd <- svd(A)
Positive <- Xsvd$d > max(tol * Xsvd$d[1L], 0)
Positive
# [1] TRUE TRUE FALSE
If the third element were true (which we can force by setting tol = 0
, as suggested by @nicola), MASS::ginv
would return:
Xsvd$v %*% (1/Xsvd$d * t(Xsvd$u))
# [,1] [,2] [,3]
# [1,] 3.996430e-01 -7.361507e-06 -1.147047e-01
# [2,] -7.361507e-06 5.014558e-08 -2.932415e-05
# [3,] -1.147047e-01 -2.932415e-05 5.468812e-02
(i.e., the same as MATLAB).
Instead, it returns:
Xsvd$v[, Positive, drop = FALSE] %*% ((1/Xsvd$d[Positive]) *
t(Xsvd$u[, Positive, drop = FALSE]))
# [,1] [,2] [,3]
# [1,] 1.675667e-03 -8.735203e-06 5.545605e-03
# [2,] -8.735203e-06 5.014084e-08 -2.890907e-05
# [3,] 5.545605e-03 -2.890907e-05 1.835313e-02
Thanks to @FaridCher for pointing out the source code of pinv
.
I'm not sure I 100% understand the MATLAB code, but I think it comes down to a difference in how tol
is used. The MATLAB correspondence to Positive
in R is:
`r = sum(s>tol)`
Where tol
is what's supplied by the user; if none is supplied, we get:
m = 0;
% I don't get the point of this for loop -- why not just `m = max(size(A))`?
for i = 1:n
m = max(m,length(A(:,i)));
end
% contrast with simply `tol * Xsvd$d[1L]` in R
% (note: i believe the elements of d are sorted largest to smallest)
tol = m*eps(max(s));
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With