I am a new guy in R and really unsure how to filter data in date frame.
I have created a data frame with two columns including monthly date and corresponding temperature. It has a length of 324.
> head(Nino3.4_1974_2000)
Month_common Nino3.4_degree_1974_2000_plain
1 1974-01-15 -1.93025
2 1974-02-15 -1.73535
3 1974-03-15 -1.20040
4 1974-04-15 -1.00390
5 1974-05-15 -0.62550
6 1974-06-15 -0.36915
The filter rule is to select the temperature which are greater or equal to 0.5 degree. Also, it has to be at least continuously 5 months.
I have eliminate the data with less than 0.5 degree temperature (see below).
for (i in 1) {
el_nino=Nino3.4_1974_2000[which(Nino3.4_1974_2000$Nino3.4_degree_1974_2000_plain >= 0.5),]
}
> head(el_nino)
Month_common Nino3.4_degree_1974_2000_plain
32 1976-08-15 0.5192000
33 1976-09-15 0.8740000
34 1976-10-15 0.8864501
35 1976-11-15 0.8229501
36 1976-12-15 0.7336500
37 1977-01-15 0.9276500
However, i still need to extract continuously 5 months. I wish someone could help me out.
If you can always rely on the spacing being one month, then let's temporarily discard the time information:
temps <- Nino3.4_1974_2000$Nino3.4_degree_1974_2000_plain
So, since every temperature in that vector is always separated by one month, we just have to look for runs where the temps[i]>=0.5
, and the run has to be at least 5 long.
If we do the following:
ofinterest <- temps >= 0.5
we'll have a vector ofinterest
with values TRUE FALSE FALSE TRUE TRUE ....
etc where it's TRUE
when temps[i]
was >= 0.5 and FALSE
otherwise.
To rephrase your problem then, we just need to look for occurences of at least five TRUE
in a row.
To do this we can use the function rle
. ?rle
gives:
> ?rle
Description
Compute the lengths and values of runs of equal values in a vector
- or the reverse operation.
Value:
‘rle()’ returns an object of class ‘"rle"’ which is a list with
components:
lengths: an integer vector containing the length of each run.
values: a vector of the same length as ‘lengths’ with the
corresponding values.
So we use rle
which counts up all the streaks of consecutive TRUE
in a row and consecutive FALSE
in a row, and look for at least 5 TRUE
in a row.
I'll just make up some data to demonstrate:
# for you, temps <- Nino3.4_1974_2000$Nino3.4_degree_1974_2000_plain
temps <- runif(1000)
# make a vector that is TRUE when temperature is >= 0.5 and FALSE otherwise
ofinterest <- temps >= 0.5
# count up the runs of TRUEs and FALSEs using rle:
runs <- rle(ofinterest)
# we need to find points where runs$lengths >= 5 (ie more than 5 in a row),
# AND runs$values is TRUE (so more than 5 'TRUE's in a row).
streakIs <- which(runs$lengths>=5 & runs$values)
# these are all the el_nino occurences.
# We need to convert `streakIs` into indices into our original `temps` vector.
# To do this we add up all the `runs$lengths` up to `streakIs[i]` and that gives
# the index into `temps`.
# that is:
# startMonths <- c()
# for ( n in streakIs ) {
# startMonths <- c(startMonths, sum(runs$lengths[1:(n-1)]) + 1
# }
#
# However, since this is R we can vectorise with sapply:
startMonths <- sapply(streakIs, function(n) sum(runs$lengths[1:(n-1)])+1)
Now if you do Nino3.4_1974_2000$Month_common[startMonths]
you'll get all the months in which the El Nino started.
It boils down to just a few lines:
runs <- rle(Nino3.4_1974_2000$Nino3.4_degree_1974_2000_plain>=0.5)
streakIs <- which(runs$lengths>=5 & runs$values)
startMonths <- sapply(streakIs, function(n) sum(runs$lengths[1:(n-1)])+1)
Nino3.4_1974_2000$Month_common[startMonths]
Here's one way using the fact that the months are regular always one month apart. Than the problem reduces to finding 5 consecutive rows with temps >= 0.5 degrees:
# Some sample data
d <- data.frame(Month=1:20, Temp=c(rep(1,6),0,rep(1,4),0,rep(1,5),0, rep(1,2)))
d
# Use rle to find runs of temps >= 0.5 degrees
x <- rle(d$Temp >= 0.5)
# The find the last row in each run of 5 or more
y <- x$lengths>=5 # BUG HERE: See update below!
lastRow <- cumsum(x$lengths)[y]
# Finally, deduce the first row and make a result matrix
firstRow <- lastRow - x$lengths[y] + 1L
res <- cbind(firstRow, lastRow)
res
# firstRow lastRow
#[1,] 1 6
#[2,] 13 17
UPDATE I had a bug that detected runs with 5 values less than 0.5 too. Here's the updated code (and test data):
d <- data.frame(Month=1:20, Temp=c(rep(0,6),1,0,rep(1,4),0,rep(1,5),0, 1))
x <- rle(d$Temp >= 0.5)
y <- x$lengths>=5 & x$values
lastRow <- cumsum(x$lengths)[y]
firstRow <- lastRow - x$lengths[y] + 1L
res <- cbind(firstRow, lastRow)
res
# firstRow lastRow
#[2,] 14 18
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With