I am having trouble interpreting the results of a logistic regression. My outcome variable is Decision
and is binary (0 or 1, not take or take a product, respectively).
My predictor variable is Thoughts
and is continuous, can be positive or negative, and is rounded up to the 2nd decimal point.
I want to know how the probability of taking the product changes as Thoughts
changes.
The logistic regression equation is:
glm(Decision ~ Thoughts, family = binomial, data = data)
According to this model, Thought
s has a significant impact on probability of Decision
(b = .72, p = .02). To determine the odds ratio of Decision
as a function of Thoughts
:
exp(coef(results))
Odds ratio = 2.07.
Questions:
How do I interpret the odds ratio?
Thoughts
affect the odds of taking (or not taking) the product by 0.07 OR Thoughts
increases (decreases) by .01, the odds of taking (not taking) the product increase (decrease) by approximately 2 units?How do I convert odds ratio of Thoughts
to an estimated probability of Decision
?
Or can I only estimate the probability of Decision
at a certain Thoughts
score (i.e. calculate the estimated probability of taking the product when Thoughts == 1
)?
The coefficient returned by a logistic regression in r is a logit, or the log of the odds. To convert logits to odds ratio, you can exponentiate it, as you've done above. To convert logits to probabilities, you can use the function exp(logit)/(1+exp(logit)) .
A logit, or the log of the odds, is the coefficient provided by a logistic regression in r. You can use exponentiation to convert logits to odds ratios, as seen above. The function exp(logit)/(1+exp(logit)) can be used to convert logits to probabilities.
The magnitude of the odds ratio is called the “strength of the association.” The further away an odds ratio is from 1.0, the more likely it is that the relationship between the exposure and the disease is causal. For example, an odds ratio of 1.2 is above 1.0, but is not a strong association.
The coefficient returned by a logistic regression in r is a logit, or the log of the odds. To convert logits to odds ratio, you can exponentiate it, as you've done above. To convert logits to probabilities, you can use the function exp(logit)/(1+exp(logit))
. However, there are some things to note about this procedure.
First, I'll use some reproducible data to illustrate
library('MASS') data("menarche") m<-glm(cbind(Menarche, Total-Menarche) ~ Age, family=binomial, data=menarche) summary(m)
This returns:
Call: glm(formula = cbind(Menarche, Total - Menarche) ~ Age, family = binomial, data = menarche) Deviance Residuals: Min 1Q Median 3Q Max -2.0363 -0.9953 -0.4900 0.7780 1.3675 Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) -21.22639 0.77068 -27.54 <2e-16 *** Age 1.63197 0.05895 27.68 <2e-16 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: 3693.884 on 24 degrees of freedom Residual deviance: 26.703 on 23 degrees of freedom AIC: 114.76 Number of Fisher Scoring iterations: 4
The coefficients displayed are for logits, just as in your example. If we plot these data and this model, we see the sigmoidal function that is characteristic of a logistic model fit to binomial data
#predict gives the predicted value in terms of logits plot.dat <- data.frame(prob = menarche$Menarche/menarche$Total, age = menarche$Age, fit = predict(m, menarche)) #convert those logit values to probabilities plot.dat$fit_prob <- exp(plot.dat$fit)/(1+exp(plot.dat$fit)) library(ggplot2) ggplot(plot.dat, aes(x=age, y=prob)) + geom_point() + geom_line(aes(x=age, y=fit_prob))
Note that the change in probabilities is not constant - the curve rises slowly at first, then more quickly in the middle, then levels out at the end. The difference in probabilities between 10 and 12 is far less than the difference in probabilities between 12 and 14. This means that it's impossible to summarise the relationship of age and probabilities with one number without transforming probabilities.
To answer your specific questions:
The odds ratio for the value of the intercept is the odds of a "success" (in your data, this is the odds of taking the product) when x = 0 (i.e. zero thoughts). The odds ratio for your coefficient is the increase in odds above this value of the intercept when you add one whole x value (i.e. x=1; one thought). Using the menarche data:
exp(coef(m)) (Intercept) Age 6.046358e-10 5.113931e+00
We could interpret this as the odds of menarche occurring at age = 0 is .00000000006. Or, basically impossible. Exponentiating the age coefficient tells us the expected increase in the odds of menarche for each unit of age. In this case, it's just over a quintupling. An odds ratio of 1 indicates no change, whereas an odds ratio of 2 indicates a doubling, etc.
Your odds ratio of 2.07 implies that a 1 unit increase in 'Thoughts' increases the odds of taking the product by a factor of 2.07.
You need to do this for selected values of thoughts, because, as you can see in the plot above, the change is not constant across the range of x values. If you want the probability of some value for thoughts, get the answer as follows:
exp(intercept + coef*THOUGHT_Value)/(1+(exp(intercept+coef*THOUGHT_Value))
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With