First of all, I'm sorry I can not speak English well.
I ask for your understanding even if there are some awkward parts of my words.
I am a beginner to get into Opencv.
I want to translate a picture of a horizontal line into a picture of a circle.
I tried to recommend linearPolar, logPolar, and warpPolar in several articles, but I did not get the desired result.
Result Image:
Here is the image I want to put and the desired result.
Input Image:
Output Image:
What function should I use to get this result?
If you have any examples or explanations for reference, please let me know.
If you let me know just the keywords, I will search Google and this site hard.
Thank you for reading my question.
linearPolar
or warpPolar
are exactly what you are looking for
You just need to pass it the WARP_INVERSE_MAP
flag to make it transform the direction you're looking for.
modified example from samples/cpp/polar_transforms.cpp
Would be something like this:
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
int main(int argc, const char** argv)
{
using namespace cv;
using namespace std;
int flags = INTER_LINEAR + WARP_FILL_OUTLIERS;
Mat src = imread(R"(C:\temp\IPpzR.png)");
Mat lin_polar_img;
rotate(src, lin_polar_img, cv::ROTATE_90_COUNTERCLOCKWISE);
imshow("Loaded",src);
Mat recovered_lin_polar_img;
Point2f center( (float)src.cols / 2, (float)src.rows / 2 );
double maxRadius = min(center.y, center.x);
cv::linearPolar(lin_polar_img, recovered_lin_polar_img, center, maxRadius, flags + WARP_INVERSE_MAP);
cv::imshow("Modified",recovered_lin_polar_img);
cv::waitKey();
return 0;
}
which gives the following result:
Peter's answer is great (+1).
I had a play with it and just wanted to post a Python version of his approach with some sliders:
#!/usr/bin/env python
import numpy as np
import cv2
# main window
WINDOW_NAME = "carToPol"
cv2.namedWindow(WINDOW_NAME)
# read input
src = cv2.imread("iPpzR.png")
# get dimenions and compute half (for center/radius)
dims = src.shape[:-1]
cols,rows = dims
half = cols // 2
def carToPol(src,center,maxRadius,interpolation,rotate90=True):
# rotate 90 degrees (cv2.warpAffine seems to mess up a column)
if(rotate90):
src = np.rot90(src)
# cartesian to polar (WARP_INVERSE_MAP)
return cv2.linearPolar(src,(centerX,centerY),maxRadius,interpolation + cv2.WARP_FILL_OUTLIERS + cv2.WARP_INVERSE_MAP)
# interpolation names: just for debugging
interpolations = ["NEAREST","LINEAR","CUBIC","AREA","LANCZOS4"]
# slider callbacks: just for debugging
def printCenterX(x):
print("center",x)
def printCenterY(x):
print("centerY",x)
def printMaxRadius(x):
print("maxRadius",x)
def printInterpolation(x):
global interpolations
print("interpolation",interpolations[x])
# create sliders
cv2.createTrackbar("centerX" ,WINDOW_NAME,half,cols,printCenterX)
cv2.createTrackbar("centerY" ,WINDOW_NAME,half,cols,printCenterY)
cv2.createTrackbar("maxRadius",WINDOW_NAME,half,cols * 4,printMaxRadius)
cv2.createTrackbar("interpolation",WINDOW_NAME,cv2.INTER_CUBIC,cv2.INTER_LANCZOS4,printInterpolation)
# continously process for quick feedback
while 1:
# exit on ESC key
k = cv2.waitKey(1) & 0xFF
if k == 27:
break
# read slider values
centerX = cv2.getTrackbarPos("centerX",WINDOW_NAME)
centerY = cv2.getTrackbarPos("centerY",WINDOW_NAME)
maxRadius = cv2.getTrackbarPos("maxRadius",WINDOW_NAME)
interpolation = cv2.getTrackbarPos("interpolation",WINDOW_NAME)
dst = carToPol(src,(centerX,centerY),maxRadius,interpolation,True)
# show result
cv2.imshow(WINDOW_NAME,dst)
# save image with 's' key
if k == ord('s'):
cv2.imwrite("output.png",dst)
# exit
cv2.destroyAllWindows()
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With