I'm trying to implement the Deep q-learning algorithm for a pong game. I've already implemented Q-learning using a table as Q-function. It works very well and learns how to beat the naive AI within 10 minutes. But I can't make it work using neural networks as a Q-function approximator.
I want to know if I am on the right track, so here is a summary of what I am doing:
When learning, a random batch of 32 subsequent experiences is selected. Then I compute the target q-values for all the current state and action Q(s, a).
forall Experience e in batch
if e == endOfEpisode
target = e.getReward
else
target = e.getReward + discountFactor*qMaxPostState
end
Now I have a set of 32 target Q values, I am training the neural network with those values using batch gradient descent. I am just doing 1 training step. How many should I do?
I am programming in Java and using Encog for the multilayer perceptron implementation. The problem is that training is very slow and performance is very weak. I think I am missing something, but can't figure out what. I would expect at least a somewhat decent result as the table approach has no problems.
I'm using a multi layer perceptron as Q-function with 1 hidden layer with 512 hidden units.
Might be too big. Depends on your input / output dimensionality and the problem. Did you try fewer?
Can the network possibly learn the necessary function?
Collect ground truth input/output. Fit the network in a supervised way. Does it give the desired output?
A common error is to have the last activation function something wrong. Most of the time, you will want a linear activation function (as you have). Then you want the network to be as small as possible, because RL is pretty unstable: You can have 99 runs where it doesn't work and 1 where it works.
Do I explore enough?
Check how much you explore. Maybe you need more exploration, especially in the beginning?
keras-rl
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With