Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

PyTorch memory model: "torch.from_numpy()" vs "torch.Tensor()"

I'm trying to have an in-depth understanding of how PyTorch Tensor memory model works.

# input numpy array In [91]: arr = np.arange(10, dtype=float32).reshape(5, 2)  # input tensors in two different ways In [92]: t1, t2 = torch.Tensor(arr), torch.from_numpy(arr)  # their types In [93]: type(arr), type(t1), type(t2) Out[93]: (numpy.ndarray, torch.FloatTensor, torch.FloatTensor)  # ndarray  In [94]: arr Out[94]:  array([[ 0.,  1.],        [ 2.,  3.],        [ 4.,  5.],        [ 6.,  7.],        [ 8.,  9.]], dtype=float32) 

I know that PyTorch tensors share the memory buffer of NumPy ndarrays. Thus, changing one will be reflected in the other. So, here I'm slicing and updating some values in the Tensor t2

In [98]: t2[:, 1] = 23.0 

And as expected, it's updated in t2 and arr since they share the same memory buffer.

In [99]: t2 Out[99]:     0  23   2  23   4  23   6  23   8  23 [torch.FloatTensor of size 5x2]   In [101]: arr Out[101]:  array([[  0.,  23.],        [  2.,  23.],        [  4.,  23.],        [  6.,  23.],        [  8.,  23.]], dtype=float32) 

But, t1 is also updated. Remember that t1 was constructed using torch.Tensor() whereas t2 was constructed using torch.from_numpy()

In [100]: t1 Out[100]:     0  23   2  23   4  23   6  23   8  23 [torch.FloatTensor of size 5x2] 

So, no matter whether we use torch.from_numpy() or torch.Tensor() to construct a tensor from an ndarray, all such tensors and ndarrays share the same memory buffer.

Based on this understanding, my question is why does a dedicated function torch.from_numpy() exists when simply torch.Tensor() can do the job?

I looked at the PyTorch documentation but it doesn't mention anything about this? Any ideas/suggestions?

like image 271
kmario23 Avatar asked Jan 28 '18 03:01

kmario23


1 Answers

from_numpy() automatically inherits input array dtype. On the other hand, torch.Tensor is an alias for torch.FloatTensor.

Therefore, if you pass int64 array to torch.Tensor, output tensor is float tensor and they wouldn't share the storage. torch.from_numpy gives you torch.LongTensor as expected.

a = np.arange(10) ft = torch.Tensor(a)  # same as torch.FloatTensor it = torch.from_numpy(a)  a.dtype  # == dtype('int64') ft.dtype  # == torch.float32 it.dtype  # == torch.int64 
like image 114
Viacheslav Kroilov Avatar answered Sep 23 '22 15:09

Viacheslav Kroilov