I have a 2D tensor with some nonzero element in each row like this:
import torch
tmp = torch.tensor([[0, 0, 1, 0, 1, 0, 0],
[0, 0, 0, 1, 1, 0, 0]], dtype=torch.float)
I want a tensor containing the index of first nonzero element in each row:
indices = tensor([2],
[3])
How can I calculate it in Pytorch?
I have simplified Iman's approach to do the following:
idx = torch.arange(tmp.shape[1], 0, -1)
tmp2= tmp * idx
indices = torch.argmax(tmp2, 1, keepdim=True)
I could find a tricky answer for my question:
tmp = torch.tensor([[0, 0, 1, 0, 1, 0, 0],
[0, 0, 0, 1, 1, 0, 0]], dtype=torch.float)
idx = reversed(torch.Tensor(range(1,8)))
print(idx)
tmp2= torch.einsum("ab,b->ab", (tmp, idx))
print(tmp2)
indices = torch.argmax(tmp2, 1, keepdim=True)
print(indeces)
The result is:
tensor([7., 6., 5., 4., 3., 2., 1.])
tensor([[0., 0., 5., 0., 3., 0., 0.],
[0., 0., 0., 4., 3., 0., 0.]])
tensor([[2],
[3]])
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With