I have a DataFrame and I would select only rows that contain index value into df1.index.
for Example:
In [96]: df Out[96]: A B C D 1 1 4 9 1 2 4 5 0 2 3 5 5 1 0 22 1 3 9 6
and these indexes
In[96]:df1.index Out[96]: Int64Index([ 1, 3, 4, 5, 6, 7, 22, 28, 29, 32,], dtype='int64', length=253)
I would like this output:
In [96]: df Out[96]: A B C D 1 1 4 9 1 3 5 5 1 0 22 1 3 9 6
To get the nth row in a Pandas DataFrame, we can use the iloc() method. For example, df. iloc[4] will return the 5th row because row numbers start from 0.
Use isin
:
df = df[df.index.isin(df1.index)]
Or get all intersectioned indices and select by loc
:
df = df.loc[df.index & df1.index] df = df.loc[np.intersect1d(df.index, df1.index)] df = df.loc[df.index.intersection(df1.index)]
print (df) A B C D 1 1 4 9 1 3 5 5 1 0 22 1 3 9 6
EDIT:
I tried solution: df = df.loc[df1.index]. Do you think that this solution is correct?
Solution is incorrect:
df = df.loc[df1.index] print (df) A B C D 1 1.0 4.0 9.0 1.0 3 5.0 5.0 1.0 0.0 4 NaN NaN NaN NaN 5 NaN NaN NaN NaN 6 NaN NaN NaN NaN 7 NaN NaN NaN NaN 22 1.0 3.0 9.0 6.0 28 NaN NaN NaN NaN 29 NaN NaN NaN NaN 32 NaN NaN NaN NaN C:/Dropbox/work-joy/so/_t/t.py:23: FutureWarning: Passing list-likes to .loc or [] with any missing label will raise KeyError in the future, you can use .reindex() as an alternative. See the documentation here: http://pandas.pydata.org/pandas-docs/stable/indexing.html#deprecate-loc-reindex-listlike print (df)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With