My problem is to extract in the most efficient way N Poisson random values (RV
) each with a different mean/rate Lam
. Basically the size(RV) == size(Lam)
.
Here it is a naive (very slow) implementation:
import numpy as NP
def multi_rate_poisson(Lam):
rv = NP.zeros(NP.size(Lam))
for i,lam in enumerate(Lam):
rv[i] = NP.random.poisson(lam=lam, size=1)
return rv
That, on my laptop, with 1e6 samples gives:
Lam = NP.random.rand(1e6) + 1
timeit multi_poisson(Lam)
1 loops, best of 3: 4.82 s per loop
Is it possible to improve from this?
Although the docstrings don't document this functionality, the source indicates it is possible to pass an array to the numpy.random.poisson function.
>>> import numpy
>>> # 1 dimension array of 1M random var's uniformly distributed between 1 and 2
>>> numpyarray = numpy.random.rand(1e6) + 1
>>> # pass to poisson
>>> poissonarray = numpy.random.poisson(lam=numpyarray)
>>> poissonarray
array([4, 2, 3, ..., 1, 0, 0])
The poisson random variable returns discrete multiples of one, and approximates a bell curve as lambda grows beyond one.
>>> import matplotlib.pyplot
>>> count, bins, ignored = matplotlib.pyplot.hist(
numpy.random.poisson(
lam=numpy.random.rand(1e6) + 10),
14, normed=True)
>>> matplotlib.pyplot.show()
This method of passing the array to the poisson generator appears to be quite efficient.
>>> timeit.Timer("numpy.random.poisson(lam=numpy.random.rand(1e6) + 1)",
'import numpy').repeat(3,1)
[0.13525915145874023, 0.12136101722717285, 0.12127304077148438]
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With