Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Pythonic way to lag datetime-indexed columns

I have dataframes with DateTime indices of various types (could be weekly, monthly, annual data). I want to generate columns that are lagged values of other columns. I get these imported from a spreadsheet, I'm not generating the datetime index inside python.

I'm struggling to find the 'pythonic' way of doing this. I figure if I use Pandas' datetime capability, the lagging might be more robust in the case of weird or exceptional data.

I made a toy example that seems to work, but it fails on my real-world example.

The toy example which correctly works (makes a new column that has the 'foo' value of the previous month)

rng = pd.date_range('2012-01-01', '2013-1-01', freq="M")
toy2 = pd.DataFrame(pd.Series(np.random.randint(0,  50, len(rng)), index=rng, name="foo"))

            foo
2012-01-31    4
2012-02-29    2
2012-03-31   27
2012-04-30    7
2012-05-31   44
2012-06-30   22
2012-07-31   16
2012-08-31   18
2012-09-30   35
2012-10-31   35
2012-11-30   16
2012-12-31   32

toy2['lag_foo']= toy2['foo'].shift(1,'m')

    foo lag_foo
2012-01-31  4   NaN
2012-02-29  2   4.0
2012-03-31  27  2.0
2012-04-30  7   27.0
2012-05-31  44  7.0
2012-06-30  22  44.0
2012-07-31  16  22.0
2012-08-31  18  16.0
2012-09-30  35  18.0
2012-10-31  35  35.0
2012-11-30  16  35.0
2012-12-31  32  16.0

But when I run this on my real-life example, it fails with:

ValueError: cannot reindex from a duplicate axis

print type(toy)
print toy.columns
print toy['IPE m2'][0:5]

<class 'pandas.core.frame.DataFrame'>
Index([u'IPE m2'], dtype='object')
Date
2016-04-30    43.29
2016-03-31    40.44
2016-02-29    34.17
2016-01-31    32.47
2015-12-31    39.35
Name: IPE m2, dtype: float64

The exception trace:

ValueError                                Traceback (most recent call last)
<ipython-input-170-9cb57a2ed681> in <module>()
----> 1 toy['prev_1m']= toy['IPE m2'].shift(1,'m')

C:\Users\mds\Anaconda2\lib\site-packages\pandas\core\frame.pyc in __setitem__(self, key, value)
   2355         else:
   2356             # set column
-> 2357             self._set_item(key, value)
   2358 
   2359     def _setitem_slice(self, key, value):

C:\Users\mds\Anaconda2\lib\site-packages\pandas\core\frame.pyc in _set_item(self, key, value)
   2421 
   2422         self._ensure_valid_index(value)
-> 2423         value = self._sanitize_column(key, value)
   2424         NDFrame._set_item(self, key, value)
   2425 

C:\Users\mds\Anaconda2\lib\site-packages\pandas\core\frame.pyc in _sanitize_column(self, key, value)
   2555 
   2556         if isinstance(value, Series):
-> 2557             value = reindexer(value)
   2558 
   2559         elif isinstance(value, DataFrame):

C:\Users\mds\Anaconda2\lib\site-packages\pandas\core\frame.pyc in reindexer(value)
   2547                     # duplicate axis
   2548                     if not value.index.is_unique:
-> 2549                         raise e
   2550 
   2551                     # other

ValueError: cannot reindex from a duplicate axis

Seems like I'm missing some subtlety of Pandas datetime indices I think. Plus I'm not even sure this is the ideal way to do this. the only thing I could suspect is that the non-working toy.index has None as the freq, while the working toy2 example, has its frequency set as 'M'

toy.index
DatetimeIndex(['2016-04-30', '2016-03-31', '2016-02-29', '2016-01-31',
               '2015-12-31', '2015-11-30', '2015-10-31', '2015-09-30',
               '2015-08-31', '2015-07-31',
               ...
                      'NaT',        'NaT',        'NaT',        'NaT',
                      'NaT',        'NaT',        'NaT',        'NaT',
                      'NaT',        'NaT'],
              dtype='datetime64[ns]', name=u'Date', length=142, freq=None)


toy2.index
DatetimeIndex(['2012-01-31', '2012-02-29', '2012-03-31', '2012-04-30',
               '2012-05-31', '2012-06-30', '2012-07-31', '2012-08-31',
               '2012-09-30', '2012-10-31', '2012-11-30', '2012-12-31'],
              dtype='datetime64[ns]', freq='M')
In [ ]:

===========================

I threw away the NaT's

toy = toy.dropna()

toy['prev_1m']= toy['IPE m2'].shift(1,'m')

and I do get the results I wanted. However, I also get a warning:

C:\Users\mds\Anaconda2\lib\site-packages\ipykernel\__main__.py:1: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
  if __name__ == '__main__':

====

this way of assignment suppresses the warnings:

toy.loc[:,'prev_1m2']= toy['IPE m2'].shift(1,'m')
like image 484
user3556757 Avatar asked Oct 31 '22 02:10

user3556757


1 Answers

There is another problem - many NaT in index in toy DataFrame, so index has duplicates values. (Maybe some datetime are duplicated too.)

Sample:

import pandas as pd
import numpy as np

rng = pd.date_range('2012-01-01', '2013-1-01', freq="M")
toy2 = pd.DataFrame(pd.Series(np.random.randint(0,  50, len(rng)), index=rng, name="foo"))

df = pd.DataFrame({'foo': [10,30,19]}, index=[np.nan, np.nan, np.nan])
print (df)
     foo
NaN   10
NaN   30
NaN   19

toy2 = pd.concat([toy2, df])
print (toy2)
            foo
2012-01-31   18
2012-02-29   34
2012-03-31   43
2012-04-30   17
2012-05-31   45
2012-06-30    8
2012-07-31   36
2012-08-31   26
2012-09-30    5
2012-10-31   18
2012-11-30   39
2012-12-31    3
NaT          10
NaT          30
NaT          19

toy2['lag_foo']= toy2['foo'].shift(1,'m')
print (toy2)

ValueError: cannot reindex from a duplicate axis

One possible solution can be omit parameter freq=m:

toy2['lag_foo']= toy2['foo'].shift(1)
print (toy2)
            foo  lag_foo
2012-01-31   21      NaN
2012-02-29   13     21.0
2012-03-31   41     13.0
2012-04-30   38     41.0
2012-05-31   15     38.0
2012-06-30   41     15.0
2012-07-31   30     41.0
2012-08-31   18     30.0
2012-09-30   12     18.0
2012-10-31   35     12.0
2012-11-30   23     35.0
2012-12-31    7     23.0
NaT          10      7.0
NaT          30     10.0
NaT          19     30.0

If need remove all records with NaN (NaT) in index, use notnull with boolean indexing:

print (toy2)
            foo
2012-01-31   41
2012-02-29   15
2012-03-31    8
2012-04-30    2
2012-05-31   16
2012-06-30   43
2012-07-31    2
2012-08-31   15
2012-09-30    3
2012-10-31   46
2012-11-30   34
2012-12-31   36
NaT          10
NaT          30
NaT          19

toy2 = toy2[pd.notnull(toy2.index)]

toy2['lag_foo']= toy2['foo'].shift(1, 'm')
print (toy2)
            foo  lag_foo
2012-01-31   41      NaN
2012-02-29   15     41.0
2012-03-31    8     15.0
2012-04-30    2      8.0
2012-05-31   16      2.0
2012-06-30   43     16.0
2012-07-31    2     43.0
2012-08-31   15      2.0
2012-09-30    3     15.0
2012-10-31   46      3.0
2012-11-30   34     46.0
2012-12-31   36     34.0
like image 146
jezrael Avatar answered Nov 15 '22 07:11

jezrael